Anokhina, M. M., Barta, A., Nierhaus, K. H., Spiridonova, V A., Kopylov, A. M. (2004). Mapping of the second tetracycline binding site on the ribosomal small subunit of E. coli. Nucleic Acids Res 32, 2594-2597. Bachler, M., Schroeder, R., von Ahsen, U. (1999). StreptoTag: a novel method for the isolation of RNA-binding proteins. RNA 5, 1509-1516.

Bass, B. L., Cech, T. R. (1984). Specific interaction between the self-splicing RNA of Tetrahymena and its guanosine substrate: implications for biological catalysis by RNA. Nature 308, 820-826. Berens, C., Thain, A., Schroeder, R. (2001). A tetracycline-binding RNA aptamer. Bioorg Med Chem 9, 2549-2556.

Bhuta, P., Chung, H. L., Hwang, J. S., Zem-licka, J. (1980). Analogues of chloramphenicol: circular dichroism spectra, inhibition of ribosomal peptidyltransferase, and possible mechanism of action. J Med Chem 23, 1299-1305.

Brodersen, D. E., Clemons, W. M. J., Carter, A. P., Morgan-Warren, R. J., Wimberly, B. T., Ramakrishnan, V. (2000). The structural basis for the action of the antibiotics tetra-cycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103, 11431154.

Burke, D.H., Hoffmann, D.C., Bown, A., Hansen, M., Pardi, A., Gold, L. (1997). RNA aptamers to the peptidyl transferase inhibi tor chloramphenicol. Chem Biol 4 (11), 833843.

Carter, A. P., Clemons, W. M., Brodersen, D. E., Morgan-Warren, R. J., Wimberly, B. T., Ramakrishnan, V (2000). Functional insights from the structure of the 30S ribo-somal subunit and its interactions with antibiotics. Nature 407, 340-348.

Cech, T. R. (1990). Self-splicing of group I in-trons. Annu Rev Biochem 59, 543-568.

Davies, J. (1990). What are antibiotics? Archaic functions for modern activities? Mol Micro-biol 4, 1227-1232.

Davies, J., Gorini, L., Davis, B. D. (1965). Misreading of RNA codewords induced by aminoglycoside antibiotics. Mol Pharmacol 1, 93-106.

Drainas, D., Mamos, P., Coutsogeorgopoulos, C. (1993). Aminoacyl analogs of chloram-phenicol: examination of the kinetics of inhibition of peptide bond formation. J Med Chem 36, 3542-3545.

Epe, B., Woolley, P., Hornig, H. (1987). Competition between tetracycline and tRNA at both P and A sites of the ribosome of Escherichia coli. FEBS Lett 213, 443-447.

Gorini, L. (1974). In: Ribosomes, M. Nomura, A. Tissieres, P. Lengyel, eds. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, pp. 791-804.

Hanson, S., Berthelot, K., Fink, B., McCarthy, J. E., Suess, B. (2003). Tetracycline-aptamer-mediated translational regulation in yeast. Mol Microbiol 49, 1627-1637.

Hartmuth, K., Vornlocker, H. P., Luhrmann, R. (2004). Tobramycin affinity tag purification of spliceosomes. Methods Mol Biol 257, 47-64.

Hermann, T. (2003). Chemical and functional diversity of small molecule ligands for RNA. Biopolymers 70, 4-18.

Hoch, I., Berens, C., Westhof, E., Schroeder, R. (1998). Antibiotic inhibition of RNA catalysis: neomycin B binds to the catalytic core of the td group I intron displacing essential metal ions. J Mol Biol 282, 557-569.

Jiang, L., Patel, D. J. (1998). Solution structure of the tobramycin-RNA aptamer complex. Nat Struct Biol 5, 769-774.

Jiang, L., Suri, A. K., Fiala, R., Patel, D. J. (1997). Saccharide-RNA recognition in an aminoglycoside antibiotic-RNA aptamer complex. Chem Biol 4, 35-50.

Jiang, L., Majumdar, A., Hu, W., Jaishree, T. J., Xu, W., Patel, D. J. (1999). Saccharide-RNA recognition in a complex formed between neomycin B and an RNA aptamer. Structure Fold Des 7, 817-827.

Klug, S. J., Famulok, M. (1994). All you wanted to know about SELEX. Mol Biol Rep 20, 97-107.

Kwon, M., Chun, S. M., Jeong, S., Yu, J. (2001). In vitro selection of RNA against kanamycin B. Mol Cells 11, 303-311.

Lato, S. M., Boles, A. R., Ellington, A. D. (1995). In vitro selection of RNA lectins: using combinatorial chemistry to interpret ribozyme evolution. Chem Biol 2, 291-303.

Liou, Y. F., Tanaka, N. (1976). Dual actions of viomycin on the ribosomal functions. Biochem Biophys Res Commun 71, 477-483.

Mandal, M., Breaker, R. R. (2004). Gene regulation by riboswitches. Nat Rev Mol Cell Biol 5, 451-463.

Michel, F., Hanna, M., Green, R., Bartel, D. P., Szostak, J. W. (1989). The guanosine binding site of the Tetrahymena ribozyme. Nature 342, 391-395.

Moazed, D., Noller, H. F. (1987). Interaction of antibiotics with functional sites in 16S ri-bosomal RNA. Nature 327, 389-394.

Modolell, J., Vazquez, D. (1977). The inhibition ofribosomal translocation by viomycin. Eur J Biochem 81, 491-497.

Murphy, F. L., Cech, T. R. (1993). An independently folding domain of RNA tertiary structure within the Tetrahymena ribozyme. Biochemistry 32, 5291-5300.

Oehler, R., Polacek, N., Steiner, G., Barta, A. (1997). Interaction of tetracycline with RNA: photoincorporation into ribosomal RNA of Escherichia coli. Nucleic Acids Res 25, 1219-1224.

Olive, J. E., De Abreu, D. M., Rastogi, T., Andersen, A. A., Mittermaier, A. K., Beattie, T. L., Collins, R. A. (1995). Enhancement of Neurospora VS ribozyme cleavage by tuber-actinomycin antibiotics. EMBO J 14, 32473251.

Purohit, P., Stern, S. (1994). Interactions of a small RNA with antibiotic and RNA ligands of the 30S subunit. Nature 370, 659-662.

Ramakrishnan, V. (2002). Ribosome structrure and the mechanism of translation. Cell 108, 557-572.

Rogers, J., Chang, A. H., von Ahsen, U., Schroeder, R., Davies, J. (1996). Inhibition of the self-cleavage reaction of the human hepatitis delta virus ribozyme by antibiotics. J Mol Biol 259, 916-925.

Spahn, C. M., Prescott, C. D. (1996). Throwing a spanner in the works: antibiotics and the translation apparatus. J Mol Med 74, 423439.

Suess, B., Hanson, S., Berens, C., Fink, B., Schroeder, R., Hillen, W. (2003). Conditional gene expression by controlling translation with tetracycline-binding apta-mers. Nucleic Acids Res 31, 1853-1858.

Tereshko, V, Skripkin, E., Patel, D. J. (2003). Encapsulating streptomycin within a small 40-mer RNA. Chem Biol 10, 175-185.

Vicens, Q., Westhof, E. (2003). Molecular recognition of aminoglycoside antibiotics by ribosomal RNA and resistance enzymes: an analysis of x-ray crystal structures. Biopolymers 70, 42-57.

von Ahsen, U., Schroeder, R. (1990). Streptomycin and self-splicing. Nature 346, 801.

von Ahsen, U., Schroeder, R. (1991). Streptomycin inhibits splicing of group I introns by competition with the guanosine substrate. Nucleic Acids Res 19, 2261-2265.

von Ahsen, U., Davies, J., Schroeder, R. (1991). Antibiotic inhibition of group I ribozyme function. Nature 353, 368-370.

Wallace, S. T., Schroeder, R. (1998). In vitro selection and characterization of streptomycin-binding RNAs: recognition discrimination between antibiotics. RNA 4, 112 -123.

Wallis, M. G., Schroeder, R. (1997). The binding of antibiotics to RNA. Prog Biophys Mol Biol 67, 141-154.

Wallis, M. G., von Ahsen, U., Schroeder, R., Famulok, M. (1995). A novel RNA motif for neomycin recognition. Chem Biol 2, 543 -552.

Wallis, M. G., Streicher, B., Wank, H., von Ahsen, U., Clodi, E., Wallace, S. T., Famulok, M., Schroeder, R. (1997). In vitro selection of a viomycin-binding RNA pseudo-knot. Chem Biol 4, 357-366.

Walsh, C. T. (2004). Polyketide and nonribo-somal peptide antibiotics: modularity and versatility. Science 303, 1805-1810.

Wang, Y., Rando, R. R. (1995). Specific binding of aminoglycoside antibiotics to RNA. Chem Biol 2, 281-290.

Wank, H., Schroeder, R. (1996). Antibiotic-induced oligomerisation of group I intron RNA. J Mol Biol 258, 53-61.

Wank, H., Wallis, M. G. (2001). The peptide antibiotic viomycin: some (mis)behavior. In: RNA-binding Antibiotics, M. G. W. Renée Schroeder, ed. Georgetown, Texas: Landes Bioscience, pp. 89-99.

Wank, H., Rogers, J., Davies, J., Schroeder, R. (1994). Peptide antibiotics of the tuberacti-nomycin family as inhibitors of group I intron RNA splicing. J Mol Biol 236, 10011010.

Wank, H., Clodi, E., Wallis, M., Schroeder, R. (1999). The antibiotic viomycin as a model peptide for the origin of the co-evolution of RNA and proteins. Orig Life Evol Biosph 29, 391-404.

Watson, J. D. (1993). Early speculation and facts about RNA templates. In: The RNA World, J. F. A. R.F. Gesteland, ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, pp. XV-XXIII.

Werstuck, G., Green, M. R. (1998). Controlling gene expression in living cells through small molecule-RNA interactions. Science 282, 296-298.

Wurmbach, P., Nierhaus, K. H. (1983). The inhibition pattern of antibiotics on the extent and accuracy of tRNA binding to the ribosome, and their effect on the subsequent steps in chain elongation. Eur J Bio-chem 130, 9-12.

Yarus, M. (1988). A specific amino acid binding site composed of RNA. Science 240, 1751-1758.

Yonath, A., Bashan, A. (2004). Ribosomal crystallography: initiation, peptide bond formation, and amino acid polymerization are hampered by antibiotics. Annu Rev Mi-crobiol 58, 233-251.

Yoshizawa, S., Fourmy, D., Puglisi, J. D. (1999). Recognition of the codon-anticodon helix by ribosomal RNA. Science 285, 17221725.

Zemlicka, J., Fernandez-Moyano, M. C., Ar-iatti, M., Zurenko, G. E., Grady, J. E., Ballesta, J. P. (1993). Hybrids of antibiotics inhibiting protein synthesis. Synthesis and biological activity. J Med Chem 36, 12391244.

0 0

Post a comment