References

1. Jeffrey K. Machines in Our Hearts: The Cardiac Pacemaker, the Implantable Defibrillator, and American Health Care. Baltimore: Johns Hopkins University Press; 2001

2. Henriquez CS. Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit Rev Biomed Eng 1993;21:1-77

3. Roth BJ. How the anisotropy of the intracellular and extracellular conductivities influences stimulation of cardiac muscle. J Math Biol 1992;30:633-646

4. Roth BJ. Electrical conductivity values used with the bidomain model of cardiac tissue. IEEE Trans Biomed Eng 1997;44:326-328

5. Roth BJ. How to explain why "unequal anisotropy ratios" is important using pictures but no mathematics. 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Aug. 30-Sept. 3, 2006, New York

6. Sepulveda NG, Roth BJ, Wikswo JP Jr. Current injection into a two-dimensional anisotropic bidomain. Biophys J 1989;55:987-999

7. Neunlist M, Tung L. Spatial distribution of cardiac transmembrane potentials around an extracellular electrode: dependence on fiber orientation. Biophys J 1995;68:2310-2322

8. Knisley SB. Transmembrane voltage changes during unipolar stimulation of rabbit ventricle. Circ Res 1995;77:1229-1239

9. Wikswo JP Jr, Lin S-F, Abbas RA. Virtual electrodes in cardiac tissue: A common mechanism for anodal and cathodal stimulation. Biophys J 1995;69:2195-2210

10. Roth BJ. A mathematical model of make and break electrical stimulation of cardiac tissue by a unipolar anode or cathode. IEEE Trans Biomed Eng 1995;42:1174-1184

11. Roth BJ. Strength-interval curves for cardiac tissue predicted using the bidomain model. J Cardiovasc Electrophysiol 1996;7:722-737

12. Roth BJ. Nonsustained reentry following successive stimulation of cardiac tissue through a unipolar electrode. J Cardiovasc Electrophysiol 1997;8:768-778

13. Goto M, Brooks C McC. Membrane excitability of the frog ventricle examined by long pulses. Am J Physiol 1969;217:1236-1245

14. Dekker E. Direct current make and break thresholds for pacemaker electrodes on the canine ventricle. Circ Res 1970;27:811-823

15. Lindemans FW, Heethaar RM, Denier van der Gon JJ, Zimmerman ANE. Site of initial excitation and current threshold as a function of electrode radius in heart muscle. Cardiovasc Res 1975;9:95-104

16. Lindemans FW, Denier van der Gon JJ. Current thresholds and liminal size in excitation of heart muscle. Cardiovasc Res 1978;12:477-485

17. Roth BJ. Artifacts, assumptions, and ambiguity: Pitfalls in comparing experimental results to numerical simulations when studying electrical stimulation of the heart. Chaos 2002;12:973-981

18. van Dam RTh, Durrer D, Strackee J, van der Tweel LH. The excitability cycle of the dog's left ventricle determined by anodal, cathodal, and bipolar stimulation. Circ Res 1956;4:196-203

19. Cranefield PF, Hoffman BF, Siebens AA. Anodal excitation of cardiac muscle. Am J Physiol 1957;190:383-390

20. Sidorov VY, Woods MC, Baudenbacher P, Baudenbacher F. Examination of stimulation mechanism and strength-interval curve in cardiac tissue. Am J Physiol 2005;289:H2602-H2615

21. Roth BJ. A mechanism for the "no-response" phenomenon during anodal stimulation of cardiac tissue. 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, Oct. 30-Nov. 2, 1997

22. Cheng Y, Mowrey KA, van Wagoner DR, Tchou PJ, Efimov IR. Virtual electrode-induced reexcitation: a mechanism of defibrillation. Circ Res 1999;85:1056-1066

23. Rodriguez B, Trayanova N. Upper limit of vulnerability in a defibrillation model of the rabbit ventricles. J Electrocardiol 2003;36(Suppl):51-56

24. Roth BJ, Patel SG. Effects of elevated extracellular potassium ion concentration on anodal excitation of cardiac tissue. J Cardiovasc Electrophysiol 2003;14:1351-1355

25. Sidorov VY, Woods MC, Wikswo JP. Effects of elevated extracellular potassium on the stimulation mechanism of diastolic cardiac tissue. Biophys J 2003;84:3470-3479

26. Rodriguez B, Tice BM, Eason JC, Aguel F, Trayanova N. Cardiac vulnerability to electric shocks during phase 1A of acute global ischemia. Heart Rhythm 2004;1:695-703

27. Mehra R, McMullen M, Furman S. Time dependence of unipolar cathodal and anodal strength-interval curves. PACE 1980;3:526-530

28. Bennett JA, Roth BJ. Time dependence of anodal and cathodal refractory periods in cardiac tissue. PACE 1999;22:1031-1038

29. Janks DL, Roth BJ. Quatrefoil reentry caused by burst pacing. J Cardiovasc Electro-physiol 2006;17:1362-1368

30. Saypol JM, Roth BJ. A mechanism for anisotropic reentry in electrically active tissue. J Cardiovasc Electrophysiol 1992;3:558-566

31. Lin S-F, Roth BJ, Wikswo JP Jr. Quatrefoil reentry in myocardium: an optical imaging study of the induction mechanism. J Cardiovasc Electrophysiol 1999;10:574-586

32. Efimov IR, Gray RA, Roth BJ. Virtual electrodes and de-excitation: new insights into fibrillation induction and defibrillation. J Cardiovasc Electrophysiol 2000;11:339-353

0 0

Post a comment