References

1. Beck CS. Resuscitation for cardiac standstill and ventricular fibrillation occurring during operation. Am J Surg 1941;54:273-279

2. Cesario DA, Dec GW. Implantable cardioverter-defibrillator therapy in clinical practice. J Am Coll Cardiol 2006;47:1507-1517

3. DiMarco JP. Implantable cardioverter-defibrillators. N Engl J Med 2003;349:1836-1847

4. Goldberger Z, Lampert R. Implantable cardioverter-defibrillators: expanding indications and technologies. JAMA 2006;295:809-818

5. Marenco JP, Wang PJ, Link MS, Homoud MK, Estes NA III. Improving survival from sudden cardiac arrest: the role of the automated external defibrillator. JAMA 2001;285:1193-1200

6. Klee M, Plonsey R. Stimulation of spheroidal cells - the role of cell shape. IEEE Trans Biomed Eng 1976;23:347-354

7. Jeltsch E, Zimmerman U. Particles in a homogeneous field: a model for the electrical breakdown of living cells in a Coulter counter. Bioelectrochem Bioenerg 1979;6:349-384

8. Gross D, Loew LM, Webb WW. Optical imaging of cell membrane potential changes induced by applied electric fields. Biophys J 1986;50:339-348

9. Hibino M, Shigemori M, Itoh H, Nagayama K, Kinosita K Jr. Membrane conductance of an electroporated cell analyzed by submicrosecond imaging of transmembrane potential. Biophys J 1991;59:209-220

10. Ehrenberg B, Farkas DL, Fluhler EN, Lojewska Z, Loew LM. Membrane potential induced by external electric field pulses can be followed with a potentiomet-ric dye. Biophys J 1987;51:833-837 [published erratum appears in Biophys. J 1987 Jul;52(1):following 141]

11. Kwaku KF, Dillon SM. Shock-induced depolarization of refractory myocardium prevents wave-front propagation in defibrillation. Circ Res 1996;79:957-973

12. Watanabe T, Rautaharju PM, McDonald TF. Ventricular action potentials, ventricular extracellular potentials, and the ECG of guinea pig. Circ Res 1985;57:362-373

13. Cheng DKL, Tung L, Sobie EA. Nonuniform responses of transmembrane potential during electric field stimulation of single cardiac cells. Am J Physiol 1999;277 (Heart Circ Physiol 46):H351-H362

14. Knisley SB, Blitchington TF, Hill BC, Grant AO, Smith WM, Pilkington TC, Ideker RE. Optical measurements of transmembrane potential changes during electric field stimulation of ventricular cells. Circ Res 1993;72:255-270

15. Windisch H, Ahammer H, Schaffer P, Muller W, Platzer D. Optical multisite monitoring of cell excitation phenomena in isolated cardiomyocytes. Pflugers Arch 1995;430:508-518

16. Sharma V, Tung L. Spatial heterogeneity of transmembrane potential responses of single guinea-pig cardiac cells during electric field stimulation. J Physiol 2002;542:477-492

17. Rohr S, Kucera JP. Optical recording system based on a fiber optic image conduit: assessment of microscopic activation patterns in cardiac tissue. Biophys J 1998;75:1062-1075

18. Windisch H, Ahammer H, Schaffer P, Muller W, Platzer D. Optical multisite monitoring of cell excitation phenomena in isolated cardiomyocytes. Pflugers Arch 1995;430:508-518

19. Sharma V, Susil RC, Tung L. Paradoxical loss of excitation with high intensity pulses during electric field stimulation of single cardiac cells. Biophys J 2005;88:3038-3049

20. Koning G, Veefkind AH, Schneider H. Cardiac damage caused by direct application of defibrillator shocks to isolated Langendorff-perfused rabbit heart. Am Heart J 1980;100:473-482

21. O'Neill RJ, Tung L. Cell-attached patch clamp study of the electropermeabilization of amphibian cardiac cells. Biophys J 1991;59:1028-1039

22. Luo CH, Rudy Y. A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ Res 1991;68:1501-1526

23. Puglisi JL, Wang F, Bers DM. Modeling the isolated cardiac myocyte. Prog Biophys Mol Biol 2004;85:163-178

24. Tung L, Borderies JR. Analysis of electric field stimulation of single cardiac muscle cells. Biophys J 1992;63:371-386

25. Sharma V, Lu SN, Tung L. Decomposition of field-induced transmembrane potential responses of single cardiac cells. IEEE Trans Biomed Eng 2002;49:1031-1037

26. Sharma V, Tung L. Transmembrane responses of single guinea pig ventricular cell to uniform electric field stimulus. J Cardiovasc Electrophysiol 1999;10:1296

27. Luo CH, Rudy Y. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res 1994;74:1071-1096

28. Zeng J, Laurita KR, Rosenbaum DS, Rudy Y. Two components of the delayed rectifier K+ current in ventricular myocytes of the guinea pig type. Theoretical formulation and their role in repolarization. Circ Res 1995;77:140-152

29. Sharma V, Tung L. Ionic currents involved in shock-induced nonlinear changes in transmembrane potential responses of single cardiac cells. Pflugers Arch 2004;449:248-256

30. Cheek ER, Ideker RE, Fast VG. Nonlinear changes of transmembrane potential during defibrillation shocks: role of Ca2+ current. Circ Res 2000;87:453-459

31. Ashihara T, Trayanova NA. Cell and tissue responses to electric shocks. Europace 2005;7:155-165

32. Neunlist M, Tung L. Optical recordings of ventricular excitability of frog heart by an extracellular stimulating point electrode. Pacing Clin Electrophysiol 1994;17:1641-1654

33. Tung L, Neunlist M, Sobie EA. Near-field and far-field stimulation of cardiac muscle. Clin Appl Mod Imaging Technol II 1994;2132:367-374

34. Neunlist M, Tung L. Spatial distribution of cardiac transmembrane potentials around an extracellular electrode: dependence on fiber orientation. Biophys J 1995;68:2310-2322

35. Gillis AM, Fast VG, Rohr S, Kleber AG. Spatial changes in transmembrane potential during extracellular electrical shocks in cultured monolayers of neonatal rat ventricular myocytes. Circ Res 1996;79:676-690

36. Zhou X, Knisley SB, Smith WM, Rollins D, Pollard AE, Idekar RE. Spatial changes in the transmembrane potential during extracellular electric stimulation. Circ Res 1998;83:1003-1014

37. Mowrey KA, Cheng Y, Tchou PJ, Efimov R. Kinetics of defibrillation shock-induced response: design implications for the optimal defibrillation waveform. Europace 2002;4:27-39

38. Sharma V, Qu F, Nikolski VP, DeGroot P, Efimov IR. Direct measurements of membrane time constant during defibrillation strength shocks. Heart Rhythm 2007;4:478-486

39. Fast VG, Rohr S, Ideker RE. Nonlinear changes of transmembrane potential caused by defibrillation shocks in strands of cultured myocytes. Am J Physiol Heart Circ Physiol 2000;278:H688-H697

40. Susil RC, Sobie EA, Tung L. Separation between virtual sources modifies the response of cardiac tissue to field stimulation. J Cardiovasc Electrophysiol 1999;10:715-727

41. Tung L, Kleber AG. Virtual sources associated with linear and curved strands of cardiac cells. Am J Physiol Heart Circ Physiol 2000;279:H1579-H1590

42. Roth BJ, Krassowska W. The induction of reentry in cardiac tissue. The missing link: how electric fields alter transmembrane potential. Chaos 1998;8:204-220

43. Dorri F, Niederer PF, Redmann K, Lunkenheimer PP, Cryer CW, Anderson RH. An analysis of the spatial arrangement of the myocardial aggregates making up the wall of the left ventricle. Eur J Cardiothorac Surg 2007;31:430-437

44. LeGrice IJ, Smaill BH, Chai LZ, Edgar SG, Gavin JB, Hunter PJ. Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am J Physiol 1995;269:H571-H582

45. White JB, Walcott GP, Pollard AE, Ideker RE. Myocardial discontinuities: a substrate for producing virtual electrodes that directly excite the myocardium by shocks. Circulation 1998;97:1738-1745

46. Makowski L, Caspar DL, Phillips WC, Goodenough DA. Gap junction structures. II. Analysis of the X-ray diffraction data. J Cell Biol 1977;74:629-645

47. White RL, Spray DC, Campos de Carvalho AC, Wittenberg BA, Bennett MV. Some electrical and pharmacological properties of gap junctions between adult ventricular myocytes. Am J Physiol 1985;249:C447-455

48. Weingart R, Maurer P. Action potential transfer in cell pairs isolated from adult rat and guinea pig ventricles. Circ Res 1988;63:72-80

49. Kieval RS, Spear JF, Moore EN. Gap junctional conductance in ventricular myocyte pairs isolated from postischemic rabbit myocardium. Circ Res 1992;71:127-136

50. Sharma V, Tung L. Theoretical and experimental study of sawtooth effect in isolated cardiac cell-pairs. J Cardiovasc Electrophysiol 2001;12:1164-1173

51. Plonsey R, Barr RC. Inclusion of junction elements in a linear cardiac model through secondary sources: application to defibrillation. Med Biol Eng Comput 1986;24:137-144

52. Plonsey R, Barr RC. Effect of junctional resistance on source-strength in a linear cable. Ann Biomed Eng 1985;13:95-100

53. Plonsey R, Barr RC. Inclusion of junction elements in a linear cardiac model through secondary sources: application to defibrillation. Med Biol Eng Comput 1986;24:137-144

54. Krinsky V, Pumir A. Models of defibrillation of cardiac tissue. Chaos 1988;8:188-203

55. Juhlin SP, Pormann JB. Dimensional comparison of the sawtooth pattern in transmembrane potential. Comput Cardiol 1994;413-416

56. Wittenberg BA, White RL, Ginzberg RD, Spray DC. Effect of calcium on the dissociation of the mature rat heart into individual and paired myocytes: electrical properties of cell pairs. Circ Res 1986;59:143-150

57. Roth BJ. Sawtooth effect: fact or fancy? J Cardiovasc Electrophysiol 2001;12:1174-1175

58. Knisley SB, Smith WM, Ideker RE. Effect of field stimulation on cellular repolarization in rabbit myocardium. Implications for reentry induction. Circ Res 1992;70:707-715

59. Frazier DW, Wolf PD, Wharton JM, Tang AS, Smith WM, Ideker RE. Stimulus-induced critical point. Mechanism for electrical initiation of reentry in normal canine myocardium. J Clin Invest 1989;83:1039-1052

60. Krassowska W, Kumar MS. The role of spatial interactions in creating the dispersion of transmembrane potential by premature electric shocks. Ann Biomed Eng 1997;25:949-963

61. Ideker RE, Wolf PD, Tang AS. Mechanisms of Defibrillation St. Louis: Mosby; 1994

62. Trayanova N, Skouibine K, Aguel F. The role of cardiac tissue structure in defibrillation. Chaos 1998;8:221-233

63. Huang X, Sandusky GE, Zipes DP. Heterogeneous loss of connexin43 protein in ischemia dog hearts. J Cardiovasc Electrophysiol 1999;10:79-91

64. Gray RA. What exactly are optically recorded "action potentials"? J Cardiovasc Electrophysiol 1999;10:1463-1466

65. Rubart M. Two-photon microscopy of cells and tissue. Circ Res 2004;95:1154-1166

66. Rohr S, Scholly DM, Kleber AG. Patterned growth of neonatal rat heart cells in culture. Morphological and electrophysiological characterization. Circ Res 1991;68:114-130

67. Berridge MJ, Bootman MD, Lipp P. Calcium - a life and death signal. Nature 1998;395:645-648

68. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 2000;1:11-21

69. Beuckelmann DJ, Wier WG. Mechanism of release of calcium from sarcoplasmic reticulum of guinea- pig cardiac cells. J Physiol (Lond) 1988;405:233-255

70. Fabiato A. Simulated calcium current can both cause calcium loading in and trigger calcium release from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol 1985;85:291-320

71. Callewaert G, Cleemann L, Morad M. Epinephrine enhances Ca2+ current-regulated Ca2+ release and Ca2+ reuptake in rat ventricular myocytes. Proc Natl Acad Sci USA. 1988;85:2009-2013

72. Santana LF, Cheng H, Gomez AM, Cannell MB, Lederer WJ. Relation between the sarcolemmal Ca2+ current and Ca2+ sparks and local control theories for cardiac excitation-contraction coupling. Circ Res 1996;78:166-171

73. Cannell MB, Berlin JR, Lederer WJ. Effect of membrane potential changes on the calcium transient in single rat cardiac muscle cells. Science 1987;238:1419-1423

74. Sipido KR, Wier WG. Flux of Ca2+ across the sacroplasmic reticulum of guinea pig cardiac cells during excitation contraction coupling. J Physiol 1991;435:605-630

75. Sharma V, Tung L. Effects of uniform electric fields on intracellular calcium transients in single cardiac cells. Am J Physiol Heart Circ Physiol 2002;282:H72-H79

76. Simpson AW. Fluorescent measurement of [Ca2+]c: basic practical considerations. Methods Mol Biol 2006;312:3-36

77. Hadley RW, Lederer WJ. Ca2+ and voltage inactivate Ca2+ channels in guinea-pig ventricular myocytes through independent mechanisms. J Physiol 1991;444:257-268

78. White E, Terrar DA. Inactivation of Ca current during the action potential in guinea-pig ventricular myocytes. Exp Physiol 1992;77:153-164

79. Eckert R, Chad JE. Inactivation of Ca channels. Prog Biophys Mol Biol 1984;44:215-267

80. Grantham CJ, Cannell MB. Ca2+ influx during the cardiac action potential in guinea pig ventricular myocytes. Circ Res 1996;79:194-200

81. Langer GA, Peskoff A. Role of the diadic cleft in myocardial contractile control. Circulation 1997;96:3761-3765

82. Mukherjee R, Spinale FG. L-type calcium channel abundance and function with cardiac hypertrophy and failure: a review. J Mol Cell Cardiol 1998;30:1899-1916

83. Raman V, Pollard AE, Fast VG. Shock-induced changes of Ca2+ and Vm in myocyte cultures and computer model: dependence on the timing of shock application. Cardiovasc Res 2007;73:101-110

84. Heida T. Electric field-induced effects on neuronal cell biology accompanying dielec-trophoretic trapping. Adv Anat Embryol Cell Biol 2003;173:3-9

85. Lee RC, Zhang D, Hannig J. Biophysical injury mechanisms in electrical shock trauma. Annu Rev Biomed Eng 2000;2:477-509

86. Trollet C, Bloquel C, Scherman D, Bigey P. Electrotransfer into skeletal muscle for protein expression. Curr Gene Ther 2006;6:561-578

87. Goodenough DA, Goliger JA, Paul DL. Connexins, connexons, and intercellular communication. Annu Rev Biochem 1996;65:475-502

0 0

Post a comment