References

1. Knisley SB, Neuman MR. Simultaneous electrical and optical mapping in rabbit hearts. Ann Biomed Eng 2003;31:32-41

2. Blech IA. Properties of materials. In: Christiansen D, ed. Electronics Engineers' Handbook, 4th edn. New York: McGraw-Hill; 1997:9.4

3. Liau J, Dumas J, Janks D, Roth BJ, Knisley SB. Cardiac optical mapping under a translucent stimulation electrode. Ann Biomed Eng 2004;32:1202-1210

4. Das DP, Webster JG. Defibrillation recovery curves for different electrode materials. IEEE Trans Biomed Eng 1980;27:230-233

5. Liau J, Knisley SB. Microprocessor-controlled laser scanner system for multiwavelength cardiac optical mapping. IEEE Comput Cardiol 2002;29:549-552

6. Himel IV HD, Knisley SB. Comparison of optical and electrical mapping of fibrillation. Physiol Meas 2007;28:707-719

7. Knisley SB. Evidence for roles of the activating function in electric stimulation. IEEE Trans Biomed Eng 2000;47:1114-1119

8. Geddes LA, Baker LE, Moore AG. Optimum electrolytic chloriding of silver electrodes. Med Biol Eng 1969;7:49-56

9. Kotz JC, Paul Treichel J. Chemistry and Chemical Reactivity, 4th ed. Fort Worth: Saunders College Publishing; 1999

10. Baynham TC, Knisley SB. Development of a current sensing electrode to determine current distribution in cardiac tissue. Ann Biomed Eng 1996;24:S60 (abstract)

11. Knisley SB, Johnson PL. Evaluating current distribution of the surface of a stimulation electrode. Proceedings of the 18th Annual International Conference IEEE, Engineering in Medicine and Biology Society (CD ROM); 1996:18

12. Knisley SB, Baynham TC. Line stimulation parallel to myofibers enhances regional uniformity of transmembrane voltage changes in rabbit hearts. Circ Res 1997;81:229-241

13. Himel IV HD, Knisley SB. Imaging of cardiac movement using ratiometric and nonra-tiometric optical mapping: effects of ischemia and 2, 3-butanedione monoxime. IEEE Trans Med Imaging 2006;25:122-127

14. Kong W, Walcott GP, Smith WM, Johnson PL, Knisley SB. Emission ratiometry for simultaneous calcium and action potential measurements with coloaded dyes in rabbit hearts: reduction of motion and drift. J Cardiovasc Electrophysiol 2003;14:76-82

15. Knisley SB, Trayanova N, Aguel F. Roles of electric field and fiber structure in cardiac electric stimulation. Biophys J 1999;77:1404-1417

16. Weidmann S. Electrical constants of trabecular muscle from mammalian heart. J Physiol 1970;210:1041-1054

17. Hodgkin AL, Rushton WAH. The electrical constants of a crustacean nerve fibre. Proc Roy Soc Lond B 1946;133:444-479

18. Lepeschkin E, Jones JL, Rush S, Jones RE. Local potential gradients as a unifying measure for thresholds of stimulation, standstill, tachyarrhythmia and fibrillation appearing after strong capacitor discharges. Adv Cardiol 1978;21:268-278

19. Tang ASL, Reiser SL, Wolf PD, Daubert JP, Ideker RE. Gradient shock fields from intracardiac catheter and cutaneous patch. Circulation 1988;78:II-45

20. Rattay F. Analysis of models for extracellular fiber stimulation. IEEE Trans Biomed Eng 1989;36:676-682

21. Sobie EA, Susil RC, Tung L. A generalized activating function for predicting virtual electrodes in cardiac tissue. Biophys J 1997;73:1410-1423

22. Fishler MG, Vepa K. Spatiotemporal effects of syncytial heterogeneities on cardiac far-field excitations during monophasic and biphasic shocks. J Cardiovasc Electrophysiol 1998;9:1310-1324

23. Entcheva E, Eason J, Efimov IR, Cheng Y, Malkin R, Claydon F. Virtual electrode effects in transvenous defibrillation-modulation by structure and interface: evidence from bidomain simulations and optical mapping. J Cardiovasc Electrophysiol 1998;9:949-961

24. Neunlist M, Tung L. Optical recordings of ventricular excitability of frog heart by an extracellular stimulating point electrode. PACE 1994;17:1641-1654

25. Neunlist M, Tung L. Spatial distribution of cardiac transmembrane potentials around an extracellular electrode: dependence on fiber orientation. Biophys J 1995;68:2310-2322

26. Wikswo JP Jr, Lin SF, Abbas RA. Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation. Biophys J 1995;69:2195-2210

27. Knisley SB, Hill BC, Ideker RE. Virtual electrode effects in myocardial fibers. Biophys J 1994;66:719-728

28. Knisley SB. Transmembrane voltage changes during unipolar stimulation of rabbit ventricle. Circ Res 1995;77:1229-1239

29. Knisley SB. Left ventricular transmembrane voltage changes produced by suprapericar-dial point and line stimulation. Circulation 2001;104:II-772 (abstract)

30. Lin S-F, Roth BJ, Wikswo JP. Quatrefoil reentry in myocardium: an optical imaging study of the induction mechanism. J Cardiovasc Electrophysiol 1999;10:574-586

31. Baynham TC, Knisley SB. Roles of line stimulation-induced virtual electrodes and action potential prolongation in arrhythmic propagation. J Cardiovasc Electrophysiol 2001;12:256-263

32. Knisley SB, Pollard AE, Ideker RE. Changing shock polarity causes a "no-switch" region where transmembrane voltage hyperpolarizes with either polarity. PACE 1998;21:847 (abstract)

33. Neunlist M, Zou S-Z, Tung L. Design and use of an "optrode" for optical recordings of cardiac action potentials. Pflugers Arch 1992;420:611-617

34. Lewis ST. The Mechanism and Graphic Registration of the Heart Beat. London: Shaw and Sons; 1925

35. Spach MS, Kootsey JM. Relating the sodium current and conductance to the shape of transmembrane and extracellular potentials by simulation: effects of propagation boundaries. IEEE Trans Biomed Eng 1985;32:743-755

36. Spach MS, Miller WT III, Miller-Jones E, Warren RB, Barr RC. Extracellular potentials related to intracellular action potentials during impulse conduction in anisotropic canine cardiac muscle. Circ Res 1979;45:188-204

37. Ding L, Splinter R, Knisley SB. Quantifying spatial localization of optical mapping using Monte Carlo simulations. IEEE Trans Biomed Eng 2001;48:1098-1107

38. Krishnan RV, Knisley SB. Spatial localization of cardiac optical mapping with multiphoton excitation. J Biomed Opt 2003;8:253-263

39. Dumas III JH, Knisley SB. Two-photon excitation of di-4-ANEPPS for optical recording of action potentials in rabbit heart. Ann Biomed Eng 2005;33:1802-1807

0 0

Post a comment