References

1. Roth BJ, Krassowska W. The induction of reentry in cardiac tissue. The missing link: how electric fields alter transmembrane potential. Chaos 1998;8(1):204-220

2. Plonsey R, Barr RC. Effect of microscopic and macroscopic discontinuities on the response of cardiac tissue to defibrillating (stimulating) currents. Med Biol Eng Comput 1986;24(2):130-136

3. Sepulveda NG, Roth BJ, Wikswo JP Jr. Current injection into a two-dimensional anisotropic bidomain. Biophys J 1989;55(5):987-999

4. Trayanova NA, Roth BJ, Malden LJ. The response of a spherical heart to a uniform electric field: a bidomain analysis of cardiac stimulation. IEEE Trans Biomed Eng 1993;40(9):899-908

5. Entcheva E, Trayanova NA, Claydon FJ. Patterns of and mechanisms for shock-induced polarization in the heart: a bidomain analysis. IEEE Trans Biomed Eng 1999;46(3):260-270

6. Fishler MG. Syncytial heterogeneity as a mechanism underlying cardiac far-field stimulation during defibrillation-level shocks. J Cardiovasc Electrophysiol 1998;9(4):384-394

7. Roth BJ. Mechanisms for electrical stimulation of excitable tissue. Crit Rev Biomed Eng 1994;22(3-4):253-305

8. Newton JC, Knisley SB, Zhou X, Pollard AE, Ideker RE. Review of mechanisms by which electrical stimulation alters the transmembrane potential. J Cardiovasc Electro-physiol 1999;10(2):234-243

9. Basser PJ, Roth BJ. New currents in electrical stimulation of excitable tissues. Annu Rev Biomed Eng 2000;2:377-397

10. Rohr S, Fluckiger-Labrada R, Kucera JP. Photolithographically defined deposition of attachment factors as a versatile method for patterning the growth of different cell types in culture. Pflugers Arch 2003;446(1):125-132

11. Gillis AM, Fast VG, Rohr S, Kleber AG. Spatial changes in transmembrane potential during extracellular electrical shocks in cultured monolayers of neonatal rat ventricular myocytes. Circ Res 1996;79(4):676-690

12. Fast VG, Rohr S, Gillis AM, Kleber AG. Activation of cardiac tissue by extracellular electrical shocks: formation of 'secondary sources' at intracellular clefts in monolayers of cultured myocytes. Circ Res 1998;82(3):375-385

13. Gillis AM, Fast VG, Rohr S, Kleber AG. Mechanism of ventricular defibrillation. The role of tissue geometry in the changes in transmembrane potential in patterned myocyte cultures. Circulation 2000;101(20):2438-2445

14. Tung L, Kleber AG. Virtual sources associated with linear and curved strands of cardiac cells. Am J Physiol Heart Circ Physiol 2000;279(4):H1579-H1590

15. Rattay F. Analysis of models for external stimulation of axons. IEEE Trans Biomed Eng 1986;33(10):974-977

16. McNeal DR. Analysis of a model for excitation of myelinated nerve. IEEE Trans Biomed Eng 1976;23(4):329-337

17. Barr RC, Plonsey R. Bioelectricity: A Quantitative Approach, 3rd edn. Berlin: Springer; 2007

18. Rattay F. Ways to approximate current-distance relations for electrically stimulated fibers. J Theor Biol 1987;125(3):339-349

19. Hoshi T, Matsuda K. Excitability cycle of cardiac muscle examined by intracellular stimulation. Jpn J Physiol 1962;12:433-446

20. Bonke FI. Passive electrical properties of atrial fibers of the rabbit heart. Pflugers Arch 1973;339(1):1-15

21. Henriquez CS. Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit Rev Biomed Eng 1993;21(1):1-77

22. Rattay F. The basic mechanism for the electrical stimulation of the nervous system. Neuroscience 1999;89(2):335-346

23. Plonsey R, Barr RC. Electric field stimulation of excitable tissue. IEEE Trans Biomed Eng 1995;42(4):329-336

24. Sobie EA, Susil RC, Tung L. A generalized activating function for predicting virtual electrodes in cardiac tissue. Biophys J 1997;73(3):1410-1423

25. Roth BJ. How the anisotropy of the intracellular and extracellular conductivities influences stimulation of cardiac muscle. J Math Biol 1992;30(6):633-646

26. Weidmann S. Electrical constants of trabecular muscle from mammalian heart. J Physiol 1970;210(4):1041-1054

27. Susil RC, Sobie EA, Tung L. Separation between virtual sources modifies the response of cardiac tissue to field stimulation. J Cardiovasc Electrophysiol 1999;10(5):715-727

28. Krassowska W, Frazier DW, Pilkington TC, Ideker RE. Potential distribution in three-dimensional periodic myocardium - Part II: application to extracellular stimulation. IEEE Trans Biomed Eng 1990;37(3):267-284

29. Wikswo JP Jr, Lin SF, Abbas RA. Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation. Biophys J 1995;69(6):2195-2210

30. Warman EN, Grill WM, Durand D. Modeling the effects of electric fields on nerve fibers: determination of excitation thresholds. IEEE Trans Biomed Eng 1992;39(12):1244-1254

31. Neunlist M, Tung L. Spatial distribution of cardiac transmembrane potentials around an extracellular electrode: dependence on fiber orientation. Biophys J 1995;68(6):2310-2322

32. Plonsey R. The nature of sources of bioelectric and biomagnetic fields. Biophys J 1982;39(3):309-312

33. Frazier DW, Krassowska W, Chen PS, Wolf PD, Dixon EG, Smith WM, Ideker RE. Extracellular field required for excitation in three-dimensional anisotropic canine myocardium. Circ Res 1988;63(1):147-164

34. Fast VG, Rohr S, Ideker RE. Nonlinear changes of transmembrane potential caused by defibrillation shocks in strands of cultured myocytes. Am J Physiol Heart Circ Physiol 2000;278(3):H688-H697

35. Knisley SB, Trayanova N, Aguel F. Roles of electric field and fiber structure in cardiac electric stimulation. Biophys J 1999;77(3):1404-1417

36. Trayanova N, Skouibine K, Aguel F. The role of cardiac tissue structure in defibrillation. Chaos 1998;8(1):221-233

37. Knisley SB. Evidence for roles of the activating function in electric stimulation. IEEE Trans Biomed Eng 2000;47(8):1114-1119

38. Altman KW, Plonsey R. Analysis of excitable cell activation: relative effects of external electrical stimuli. Med Biol Eng Comput 1990;28(6):574-580

0 0

Post a comment