References

1. Maisel W. Pacemaker and ICD generator reliability: meta-analysis of device registries. JAMA 2006;295:1929-1934

2. Sepulveda NG, Roth BJ, Wikswo JP Jr. Current injection into a two-dimensional anistropic bidomain. Biophys J 1989;55:987-999

3. Hodgkin AL, Rushton WAH. The electrical constants of the crustacean nerve fiber. Proc Roy Soc Lond 1946;133:444-479

4. Wikswo JP Jr, Lin SF, Abbas RA. Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation. Biophys J 1995;69:2195-2210

5. Efimov IR, Cheng Y, Biermann M, Van Wagoner DR, Mazgalev TN, Tchou PJ. Transmembrane voltage changes produced by real and virtual electrodes during monophasic defibrillation shock delivered by an implantable electrode. J Cardiovasc Electrophys 1997;8:1031-1045

6. Efimov IR, Gray RA, Roth BJ. Virtual electrodes and deexcitation: new insights into fibrillation induction and defibrillation. J Cardiovasc Electrophys 2000;11:339-353

7. Knisley SB, Trayanova NA, Aguel F. Roles of electric field and fiber structure in cardiac electric stimulation. Biophys J 1999;77:1404-1417

8. Evans FG, Ideker RE, Gray RA. Effect of shock-induced changes in transmembrane potential on reentrant waves and outcome during cardioversion of isolated rabbit hearts. J Cardiovasc Electrophysiol 2002;13:1118-1127

9. Efimov IR, Aguel F, Cheng Y, Wollenzier B, Trayanova NA. Virtual electrode polarization in the far field: implications for external defibrillation. Am J Physiol 2000;279:H1055-H1070

10. Sobie EA, Susil RC, Tung L. A generalized activating function for predicting virtual electrodes in cardiac tissue. Biophys J 1997;73:1410-1423

11. Trayanova NA, Skouibine K, Aguel F. The role of cardiac tissue structure in defibrillation. Chaos 1998;8:221-233

12. Trayanova NA. Far-field stimulation of cardiac tissue. Herzschrittmacher Ther Electrophys 1999;10:137-148

13. Fast VG, Sharifov OF, Cheek ER, Newton JC, Ideker RE. Intramural virtual electrodes during defibrillation shocks in left ventricular wall assessed by optical mapping of membrane potential. Circulation 2002;106:1007-1014

14. Trayanova NA. Concepts of defibrillation. Phil Trans Roy Soc Lond A 2001;359:1327-1337

15. Entcheva E, Trayanova NA, Claydon F. Patterns of and mechanisms for shock-induced polarization in the heart: a bidomain analysis. IEEE Trans Biomed Eng 1999;46:260-270

16. Roth BJ. A mathematical model of make and break electrical stimulation of cardiac tissue by a unipolar anode or cathode. IEEE Trans Biomed Eng 1995;42:1174-1184

17. Cheng Y, Mowrey KA, Van Wagoner DR, Tchou PJ, Efimov IR. Virtual electrode induced re-excitation: a mechanism of defibrillation. Circ Res 1999;85:1056-1066

18. Plonsey R. Bioelectric sources arising in excitable fibers (ALZA lecture). Ann Biomed Eng 1988;16:519-546

19. Hooke N, Henriquez CS, Lanzkron P, Rose D. Linear algebraic transformations of the bidomain equations: implications for numerical methods. Math Biosci 1994;120:127-145

20. Pollard AE, Hooke N, Henriquez CS. Cardiac propagation simulation. Crit Rev Biomed Eng 1992;20:171-210

21. Aguel F, DeBruin KA, Krassowska W, Trayanova NA. Effects of electroporation on the transmembrane potential distribution in a two-dimensional bidomain model of cardiac tissue. J Cardiovasc Electrophys 1999;10:701-714

22. DeBruin KA, Krassowska W. Electroporation and shock-induced transmembrane potential in a cardiac fiber during defibrillation strength shocks. Ann Biomed Eng 1998;26:584-596

23. Cheng DKL, Tung L, Sobie EA. Nonuniform responses of transmembrane potential during electric field stimulation of single cardiac cells. Am J Physiol 1999;277:H351-H362

24. Skouibine K, Trayanova NA, Moore PK. A numerically efficient model for simulation of defibrillation in an active bidomain sheet of myocardium. Math Biosci 2000;166:85-100

25. Ashihara T, Trayanova N. Asymmetry in membrane responses to electrical shocks: insight from bidomain simulations. Biophys J 2004;87:2271-2282

26. Vigmond EJ, Aguel F, Trayanova NA. Computationally efficient methods for solving the bidomain equations in 3D. In: Engineering in Medicine and Biology Society, Proceedings of the 23rd Annual Conference of the IEEE/EMBS; Vol 1. 2001:348-351

27. Keener JP, Bogar K. A numerical method for the solution of the bidomain equations in cardiac tissue. Chaos 1998;8:234-241

28. Pennacchio M, Simoncini V. Efficient algebraic solution of reaction-diffusion systems for the cardiac excitation process. J Comp Appl Math 2002;145:49-70

29. Potse M, Dube B, Richer J, Vinet A, Gulrajani RM. A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans Biomed Eng 2006;53:2425-2435

30. Plank G, Liebmann M, Weber dos Santos R, Vigmond EJ, Haase G. Algebraic Multigrid Preconditioner for the Cardiac Bidomain Model. IEEE Trans Biomed Eng 2007;54:585-596

31. Li X, Demmel J. SuperLU DIST: a scalable distributed-memory sparse direct solver for unsymmetric linear systems. ACM Trans Math Softw TOMS 2003;29: 110-140

32. Amestoy P, Duff IS, L'Excellent JY, Koster J. Mumps: a general purpose distributed memory sparse solver. In: PARA ' 00: Proceedings of the 5th International Workshop on Applied Parallel Computing, New Paradigms for HPC in Industry and Academia. London: Springer; 2001:121-130

33. Iyer V, Mazhari R, Winslow RL. A computational model of the human left-ventricular epicardial myocyte. Biophys J 2004;87:1507-1525

34. Cortassa S, Aon MA, O'Rourke B, Jacques R, Tseng HJ, Marban E, Winslow RL. A computational model integrating electrophysiology, contraction, and mitochondrial bioenergetics in the ventricular myocyte. Biophys J 2006;91:1564-1589

35. Weber dos Santos R, Plank G, Bauer S, Vigmond E. Parallel multigrid preconditioner for the cardiac bidomain model. IEEE Trans Biomed Eng 2004;51:1960-1968

36. Austin TM, Trew ML, Pullan AJ. Solving the cardiac bidomain equations for discontinuous conductivities. IEEE Trans Biomed Eng 2006;53:1265-1272

37. Vetter FJ, McCulloch AD. Three-dimensional analysis of regional cardiac function: a model of rabbit ventricular anatomy. Prog Biophys Mol Biol 1998;69:157-183

38. Zhou X, Rollins DL, Smith WM, Ideker RE. Responses of the transmembrane potential of myocardial cells during a shock. J Cardiovasc Electrophysiol 1995;6:252-263

39. Fast VG, Rohr S, Ideker RE. Nonlinear changes of transmembrane potential caused by defibrillation shocks in strands of cultured myocytes. Am J Physiol 2000;278:H688-H697

40. Faber GM, Rudy Y. Action potential and contractility changes in [Na+]j over-loaded cardiac myocytes: a simulation study. Biophys J 2000;78:2392-2404

41. Al-Khadra AS, Nikoloski V, Efimov IR. The role of electroporation in defibrillation. Circ Res 2000;87:797-804

42. Cheek ER, Ideker RE, Fast VG. Nonlinear changes of transmembrane potential during defibrillation shocks: role of Ca2+ current. Circ Res 2000;87:453-459

43. Cheek ER, Fast VG. Nonlinear changes of transmembrane potential during electrical shocks: role of membrane electroporation. Circ Res 2004;94:208-214

44. Puglisi JL, Bers DM. LabHEART: an interactive computer model of rabbit ventricular myocyte ion channels and Ca transport. Am J Physiol 2001;281:C2049-C2060

45. Trayanova NA, Eason JC, Aguel F. Computer simulations of cardiac defibrillation: a look inside the heart. Comput Vis Sci 2002;4:259-270

46. Constantino J, Blake R, Marshall M, Trayanova N. Decreasing LV postshock excitable gap lowers the upper limit of vulnerability. Heart Rhythm 2006;3:S225-S226

47. Trayanova NA, Bray MA. Membrane refractoriness and excitation induced in cardiac fibers by monophasic and biphasic shocks. J Cardiovasc Electrophysiol 1997;8:745-757

48. Anderson C, Trayanova NA, Skouibine K. Termination of spiral waves with biphasic shocks: the role of virtual electrode polarization. J Cardiovasc Electrophysiol 2000;11:1386-1396

49. Anderson C, Trayanova NA. Success and failure of biphasic shocks: results of bidomain simulations. Math Biosci 2001;174:91-109

50. Rodriguez B, Tice BM, Eason JC, Aguel F, Ferrero JM Jr, Trayanova N. Effect of acute global ischemia on the upper limit of vulnerability: a simulation study. Am J Physiol 2004;286:H2078-H2088

51. Rodriguez B, Tice B, Eason J, Aguel F, Trayanova N. Cardiac vulnerability to electric shocks during phase 1 a of acute global ischemia. Heart Rhythm 2004;6:695-703

52. Rodriguez B, Li L, Eason JC, Efimov IR, Trayanova N. Differences between left and right ventricular chamber geometry affect cardiac vulnerability to electric shocks. Circ Res 2005;97:168-175

53. Wiggers CJ. Studies of ventricular fibrillation caused by electric shock: cinematographic and electrocardiographic observations of the natural process in the dog's heart: its inhibition by potassium and the revival of coordinated beats by calcium. Am J Physiol 1930;5:351-365

54. King BG. The effect of electric shock on heart action with special reference to varying susceptibility in different parts of the cardiac cycle. Ph.D. thesis, Columbia University; 1934

55. Moe GK, Harris AS, Wiggers CJ. Analysis of the initiation of fibrillation by electro-graphic studies. Am J Physiol 1941;134:473-492

56. Fabiato A, Coumel P, Gourgon R, Saumont R. Le seuil de rponse synchrone des fibres myocardiques. Application la comparaison exprimentale de l'efficacit des diffrentes formes de chocs lectriques de dfibrillation. Arch Mal Cur 1967;60:527-544

57. Chen PS, Shibata N, Dixon EG, Martin RO, Ideker RE. Comparison of the defibrillation threshold and the upper limit of ventricular vulnerability. Circulation 1986;73:1022-1028

58. Rodriguez B, Eason JC, Trayanova N. Differences between left and right ventricular anatomy determine the types of reentrant circuits induced by an external electric shock. A rabbit heart simulation study. Prog Biophys Mol Biol 2006;90:399-413

59. Arevalo H, Rodriguez B, Trayanova N. Arrhythmogenesis in the heart: multiscale modeling of the effects of defibrillation shocks and the role of electrophysiological heterogeneity. Chaos 2007;17:015103

60. Skouibine K, Trayanova NA, Moore P. Success and failure of the defibrillation shock: insights from a simulation study. J Cardiovasc Electrophysiol 2000;11:785-796

61. Trayanova NA, Eason JC, Anderson C, Aguel F. Computer modeling of defibrillation II: why does the shock fail? In: Cabo C, Rosenbaum D, eds. Quantitative Cardiac Electro-physiology. New York: Marcel Dekker; 2002:235

62. Rodriguez B, Trayanova N. Upper limit of vulnerability in a defibrillation model of the rabbit ventricles. J Electrocardiol 2003;36[Suppl]:51-56

63. Efimov IR, Cheng Y, Van Wagoner DR, Mazgalev TN, Tchou PJ. Virtual electrode-induced phase singularity: a basic mechanism of defibrillation failure. Circ Res 1998;82:918-925

64. Efimov IR, Cheng Y, Yamanouchi Y, Tchou PJ. Direct evidence of the role of virtual electrode-induced phase singularity in success and failure of defibrillation. J Cardiovasc Electrophysiol 2000;11:861-868

65. Trayanova N, Aguel F, Larson C, Haro C. Modeling cardiac defibrillation: an inquiry into post-shock dynamics. In: Zipes D, Jalife J, eds. Cardiac Electrophysiology: From Cell to Bedside, 4th ed. Philadelphia: WB Saunders; 2004:282-291

66. Bardy GH, Ivey TD, Allen MD, Johnson G, Mehra R, Greene HL. A prospective randomized evaluation of biphasic versus monophasic waveform pulses on defibrillation efficacy in humans. J Am Coll Cardiol 1989;14:728-733

67. Saksena S, An H, Mehra R, DeGroot P, Krol RB, Burkhardt E, Mehta D, John T. Prospective comparison of biphasic and monophasic shocks for implantable cardioverter-defibrillators using endocardial leads. Am J Cardiol 1992;70:304-310

68. Chapman PD, Wetherbee JN, Vetter JW, Troup P, Souza J. Strength-duration curves of fixed pulse width variable tilt truncated exponential waveforms for nonthoracotomy internal defibrillation in dogs. Pacing Clin Electrophysiol 1988;11:1045-1050

69. Dixon EG, Tang ASL, Wolf PD, Meador JT, Fine MJ, Calfee RV, Ideker RE. Improved defibrillation thresholds with large contoured epicardial electrodes and biphasic waveforms. Circulation 1987;76:1176-1184

70. Feeser SA, Tang ASL, Kavanagh KM, Rollins DL, Smith WM, Wolf PD, Ideker RE. Strength-duration and probability of success curves for defibrillation with biphasic waveforms. Circulation 1990;82:2128-2141

71. Kavanagh KM, Tang ASL, Rollins DL, Smith WM, Ideker RE. Comparison of the internal defibrillation thresholds for monophasic and double and single capacitor biphasic waveforms. J Am Coll Cardiol 1989;14:1343-1349

72. Schuder JC, Gold JH, Stoeckle H, McDaniel WC, Cheung KN. Transthoracic ventricular defibrillation in the 100 kg calf with symmetrical one-cycle bidirectional rectangular wave stimuli. IEEE Trans Biomed Eng 1983;30:415-422

73. Tang ASL, Yabe S, Wharton JM, Dolker M, Smith WM, Ideker RE. Ventricular defibrillation using biphasic waveforms: the importance of phasic duration. J Am Coll Cardiol 1989;13:201-214

74. Kroll MW. A minimal model of the single capacitor biphasic defibrillation waveform. Pacing Clin Electrophysiol 1994;17:1782-1792

75. Bourn DW, Trayanova NA, Gray RA. Shock-induced arrhythmogenesis and iso-electric window. Pacing Clin Electrophysiol 2002;25(Pt II):604

76. Bourn DW, Gray RA, Trayanova NA. Characterization of the relationship between preshock state and virtual electrode polarization-induced propagated graded responses resulting in arrhythmia induction. Heart Rhythm 2006;3:583-595

77. Ashihara T, Constantino J, Trayanova NA. Tunnel propagation of postshock activations as a hypothesis for fibrillation induction and isoelectric window. Circ Res 2008;102:737-745, 2008

0 0

Post a comment