Anatomy of Arousal

Arousal requires the interplay of both the reticular formation and the cerebral hemispheres. The reticular components necessary for arousal reside in the midbrain and diencephalon; the pontine reticular formation is not necessary for arousal. The midbrain may be viewed as a driving center for the higher structures; loss of the midbrain reticular formation (MRF) produces a state in which the cortex appears to be waiting for the command or ability to function. This is manifested electroencephalographically as alpha coma, in which the resting electrical activity of the cortex appears relatively normal but cannot be altered by external or internal stimuli. This ascending midbrain reticular activating system extends upward into the hypothalamus to the thalamus. It receives collaterals from and is stimulated by every major somatic and sensory pathway directly or indirectly. Because of its many cellular components, this system is best regarded as a physiological rather than a precise anatomical entity. Nonetheless, at least three principle paths project out of the midbrain -- one to the thalamic reticular nucleus and then to the cortex, one to the hypothalamus and then on to the basal forebrain and limbic system, and a third to the brain stem median raphe and locus caeruleus with consequent diffuse cortical projections. y

The precise mechanism of diencephalic involvement in arousal is uncertain. Information from the midbrain reticular formation passes to the thalamic reticular nucleus, through which these signals must pass in order to allow the cortex to function. The thalamic reticular nucleus acts predominantly to inhibit the cerebral cortex via outflow tracts that traverse numerous other thalamic nuclei. By increasing or decreasing thalamic inhibitory mechanisms on the cortex, the ascending reticular system from the midbrain provides a gating mechanism to enhance or diminish neuronal activation. [io]

Disorders that distort the normal anatomical relationships of the midbrain, diencephalon, and cortex appear to impair arousal by interrupting the flow of information from the midbrain to the cortex. However, it is likely that the diencephalon plays a more active role in the control of arousal than simply that of a conduit. For example, in the prion disorder known as fatal familial insomnia (see Ch§pter44 ), dysfunction of neurons in the anterior and ventral thalamic nuclei interfere with normal sleep-wake cycling to diminish or even completely prevent sleep.

Because of the diffuse anatomical substrate of arousal, little is known of the specific neurochemistry involved in the maintenance of arousal. It appears, however, that central acetylcholine and monoamine systems (noradrenaline and serotonin) have received the most attention. Cholinergic receptors exist at many levels of this system; antimuscarinic drugs often depress consciousness, and the centrally active cholinesterase inhibitor physostigmine reverses anticholinergic encephalopathy, both observations suggesting a direct role of the cholinergic system. Likewise, norepinephrine and serotonin are neurotransmitters in numerous areas

of the brain stem reticular formation and may serve as direct or indirect chemical components of arousal pharmacology. [iii

Although older discussions of this material have stressed the role of downward shift of the midbrain in the production of coma, current concepts of pathological anatomy have been revised by the availability of computed tomography (CT) and magnetic resonance imaging (MRI). It is now clear that in patients with lateralized masses, the horizontal displacement of the diencephalon is more closely correlated with the degree of altered awareness than the vertical displacement. In patients with diffuse brain swelling, caudal vertical displacement of the diencephalon is important, but the actual mechanism of coma may relate more to elevated intracranial pressure (ICP), which compromises cerebral perfusion, than the actual movement. Terminally, both lateral masses and diffuse supratentorial brain swelling displace the brain stem caudally, separating it from the basilar artery (which remains fixed to the clivus).

Loss of function of both cerebral hemispheres interferes with normal arousal mechanisms. However, over days to weeks following a severe global cortical injury (e.g., hypoxia), the central nervous system appears to re-establish some degree of arousal. This is clinically apparent in the vegetative state, in which the patient manifests sleep-wake cycling. This condition appears to represent arousal without awareness, and is histopathologically characterized by loss of the cortex with preservation of brain stem and diencephalic reticular structures.

In summary, two primary types of lesions depress the level of arousal, either direct brain stem-diencephalic dysfunction involving the reticular formation and nuclei or bilateral cerebral dysfunction. Unilateral cortical lesions should not impair arousal function unless there is secondary compression or compromise of the other hemisphere or reticular structures, as sometimes occurs with herniation syndromes.

Sleeping Sanctuary

Sleeping Sanctuary

Salvation For The Sleep Deprived The Ultimate Guide To Sleeping, Napping, Resting And  Restoring Your Energy. Of the many things that we do just instinctively and do not give much  of a thought to, sleep is probably the most prominent one. Most of us sleep only because we have to. We sleep because we cannot stay awake all 24 hours in the day.

Get My Free Ebook

Post a comment