Lightning And Electrical Injuries

Pathogenesis and Pathophysiology. Although incompletely understood, the two major causes of tissue damage are thermal injury and electroporation, which is the production and expansion of transient aqueous pores in the lipid bilayer component of the cell membrane. y

Epidemiology and Risk Factors. About 100 lightning and 1500 technical electricity-related deaths per year occur in the United States. The following routes can produce lightning injury. A direct strike is the most damaging, which is more common if the person is carrying a metal conductor such as an umbrella or golf club above shoulder level. A side flash or splash injury occurs when lightning first strikes a tall object such as a tree and then arcs to the person standing next to the object or when lightning first strikes a person or animal and then the second victim. A ground or stride current occurs when lightning strikes the ground first and then travels along the surface before reaching the person. Occasionally, people can sustain injury indoors while on the telephone from current conducted through the lines or in the bath or shower from ground current traveling along the water pipes.

Technical electrical injuries can occur from exposure to high-voltage electricity (1000 volts or more) and low-voltage electricity. High-voltage electricity injuries, which are almost always work-related, account for about 70 percent of electrical injuries and deaths. Low-voltage injuries typically happen in the home with the following common circumstances: the use of electrical appliances while standing on a wet floor or while in the bathtub; children playing with outlets or wires; or use of faulty electrical equipment. When the energized conductor is held in the hand, alternating current exposure in the range of 8 to 22 mA at 60 Hz may result in long exposure due to a state of tetanic contraction of flexor muscles of the forearm and hand, which is paradoxically termed let go current.y

Clinical Features and Associated Disorders. Lightning and electrical injuries may result in sudden death or cerebral hypoxia from inducing ventricular fibrillation. Transient loss of consciousness, confusion, and amnesia may also occur. y Lightning injury may result in keraunoparalysis, which is a transient paralysis usually of the lower extremities associated with sensory loss and pale skin. Lightning and electrical injuries may also cause acute spinal cord, focal brain, and peripheral nerve damage and rhabdomyolysis. Deep burns are more common with electrical than with lightning injuries. Delayed neurological disorders associated with lightning and electrical injuries include cognitive deficits, motor neuron disease, parkinsonism, choreoathetosis, dystonia, myoclonus, basilar artery thrombosis, seizures, myelopathy, generalized polyneuropathy, and reflex sympathetic dystrophy. y , y An additional type of injury is secondary trauma, such as from falls.

Management, Prognosis and Future Perspectives. Evaluation and management depend upon the sites, types, and extent of injury. About one third of lightning strikes are fatal. The symptoms and signs of keraunoparalysis typically resolve within a few hours. Victims of lightning and electrical injuries who are comatose due to a hypoxic encephalopathy as a result of cardiac arrest usually have a poor prognosis. Most patients with spinal cord injuries due to lightning and electrical injuries have permanent disability.


Peripheral Neuropathy Natural Treatment Options

Peripheral Neuropathy Natural Treatment Options

This guide will help millions of people understand this condition so that they can take control of their lives and make informed decisions. The ebook covers information on a vast number of different types of neuropathy. In addition, it will be a useful resource for their families, caregivers, and health care providers.

Get My Free Ebook

Post a comment