REM Sleep

Natural Insomnia Program

Insomnia No More

Get Instant Access

The anatomical substrates for the different components of REM sleep are as follows:

1. An important substrate is cortical desynchronization. The origin of the mixed frequency activity is the mesencephalic reticular formation. The reticular cells fire about 15 seconds before activation of cortex, and their projections extend to the intralaminar nuclei of the thalamus with widespread projections to cortex.

2. Hippocampal theta activity is highly synchronous activity with a frequency of 5 to 10 Hz, which is generated in the dentate and medial entorhinal cortex. It involves the rostral pontine reticular formation in the area of the nucleus pontis oralis.

3. Muscle atonia, except for respiratory and ocular muscles, is a tonic event of REM sleep. Electrical stimulation studies have shown that muscle atonia occurs following activation of the medullary magnocellular reticular nucleus and the rostral nucleus pontis oralis. Muscle paralysis arises at the spinal cord level, from a centrally mediated hyperpolarization of the alpha motor neurons through the action of the inhibitory neurotransmitter glycine.

4. Muscle twitches are superimposed on the tonic muscle paralysis. The twitches arise from descending excitatory impulses, which transiently overcome motor neuron inhibition.

5. Rapid eye movements are another phasic event of REM sleep. Horizontal eye movements arise from burst neurons in the parabducens reticular formation in the pons, and vertical eye movements are associated with activation of the midbrain reticular formation. Positron emission tomography has shown that REM-related eye movements involve cortical areas similar to those used during wakefulness.

6. PGO activity is a phasic feature of REM sleep, generated in the pons and projected through the lateral geniculate body and other thalamic nuclei to the occipital cortex. PGO activity is of two types--type one occurs independent of eye movements, and type 2 occurs simultaneously

with eye movements. PGO spike activity has been associated with fragmentary images or dreams. 7. Autonomic nervous system lability, with profound sympathetic activation and fluctuations in respirations, heart rate, and blood pressure, involves the parabrachial nuclei of pons. Other features of REM sleep include penile erections not associated with sexual stimulation or dream content and thermoregulatory suspension leading to a pseudopoikilothermic state. Additionally, there is an increase in cerebral metabolism and blood flow as compared with NREM sleep. y

The regulation of REM sleep is primarily at the level of the brain stem, with REM-on and REM-off nuclei. y In the model of neuronal interactions as outlined by McCarley, there are 4 steps in the REM cycle.[3] Although the putative trigger zone initiating REM sleep is not identified, the activity of brain stem areas during REM sleep has been studied, both electrically and pharmacologically. Brain stem nuclei with activity immediately preceding and persisting during REM sleep are the cholinergic cells in the dorsolateral tegmentum: the lateral dorsal tegmental (LDT) and the pedunculopontine tegmental (PPN) nuclei. These two nuclei comprise the main concentration of brain stem cholinergic neurons. y The projection areas of these nuclei include the basal ganglia; the limbic areas, including the preoptic area; the thalamic areas, including the lateral geniculate nuclei; and the cortical areas. The PPN plays a role in numerous feedback loops, involving locomotion, and rhythmical functions, specifically control of sleep-wake cycles and generation of REM sleep. The cholinoceptive REM triggering zone located in the paramedian reticular formation receives input from LDT and PPN. Inhibition of these REM-on nuclei appears to arise from nearby REM-off cells, primarily the serotonergic neurons of the dorsal raphe and adrenergic neurons of the locus coeruleus.

The reciprocal-interaction model proposed by Hobson posits that control of REM sleep arises from anatomically distributed and neurochemically integrated populations of cells. This model is summarized by McCarley as involving four steps: (1) Positive feedback of REM-on neurons through excitatory interconnections with reticular neurons. (2) Excitation of REM-off neurons by REM-on neurons mediated through cholinergic pathways, although the reticular formation may actually be the origin of this process. (3) Inhibition of REM-on neurons by REM-off neurons located in the dorsal raphe and locus coeruleus. (4) Inhibitory feedback of REM-off neurons through recurrent collateral or some other method of serotonin and norepinephrine feedback. [3

The neuroanatomical areas involved in the generation of REM sleep have largely been identified through transections at different levels in the neuraxis. In transections separating the forebrain from the brain stem, REM sleep features are recorded caudal to the cut. These features include atonia, rapid eye movements, PGO spike bursts, and REM-like activation of the reticular formation. However, in this transection, thermoregulatory control is lost with an inverse relationship between temp and amount of REM sleep. Transections between the locus coeruleus and the red nucleus, separating the pons from the midbrain, results in atonia, PGO spike bursts, rapid eye movements, and activation of the reticular formation in a rhythmical pattern caudal to the transection. Transections between the medulla and the pons result in a regular cycle of REM above the transection, with the exception of the generation of muscle atonia. Taken together, these experiments provide evidence that REM sleep is generated primarily in the pons. y

REM sleep is the form of sleep in which many dreams occur. When awakened during an episode of REM, the sleeper will report the contents of the dream approximately 85 percent of the time. The function of dreaming has remained elusive. Both physiological (related to memory and learning) and psychological roles have been proposed.^

PreviousNext

Was this article helpful?

0 0
Sleeping Solace

Sleeping Solace

How To Better Your Sleep For A Better Life. Understanding the importance of good sleeping habits is very beneficial to the overall health of an individual in both mental and physical levels. Learn all the tricks here.

Get My Free Ebook


Post a comment