References

1. Rowe, D.J., 2005. Introduction. In Chemistry and Technology of Flavors and Fragrances, Chap. 1, D.J. Rowe (ed.). Oxford: The Blackwell Publishing.

2. Parry, E.J., 1908. The Chemistry of Essential Oils and Artificial Perfumes, 2nd ed. London: Scott, Greenwood & Son.

3. Semmler, F.W., 1906-1907. Die Ätherischen Öle, Vol. I to IV, 3rd ed. Leipzig: Verlag von Veit.

4. Gildemeister, E. and F.R. Hoffman, 1950. Die Ätherischen Öle, Vol. 1, 3rd ed. Leipzig: Verlag Von Schimmel & Co.

5. Finnemore, H., 1926. The Essential Oils, 1st ed. London: Ernest Benn.

6. Guenther, E., 1972. The Essential Oils—Vol. 1: History—Origin in Plants Production—Analysis, reprint of 1st ed. (1948). Florida: Krieger Publishing Company.

7. Croteau, R., T.M. Kutchan, and N.G. Lewis, 2000. Natural products (secondary metabolites). In Biochemistry & Molecular Biology of Plants, Chap. 24, 1st ed., B. Buchanan, W. Gruissen, and R. Jones (eds). New Jersey: ASPB and Wiley.

8. World Health Organisation, 2007. The International Pharmacopoeia (IntPh), 4th ed. Geneva: World Health Organisation Press.

9. Japanese Pharmacopoeia JP XV 2007, 15th ed. Tokyo: Yakuji Nippo, Ltd.

10. The Stationery Office, 2007. British Pharmacopoeia BP 2008. Norwich: The Stationery Office (TSO).

11. United States Pharmacopoeia Convention, 2007. The United States Pharmacopoeia USP/NF 2008. Maryland: United States Pharmacopoeia Convention Inc.

12. European Directorate for the Quality of Medicines & Healthcare (Edqm), 2007. European Pharmacopoeia, 6th ed. Strasburg: European Directorate for the Quality of Medicines & Healthcare (Edqm).

13. Sweetman, S. (ed.), 2007. Martindale: The Complete Drug Reference, 35th ed. London: Pharmaceutical Press.

14. International Organization for Standardization, 1997. ISO 3761-199?, Geneva: International Organization for Standardization, http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_tc_browse. htm?commid=48956 (access date December 15, 2007).

15. International Organization for Standardization, 2007. TC 5? Essential Oils. Geneva: International Organization for Standardization, http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_tc_browse. htm?commid=48956 (access date December 15, 2007).

16. AFNOR—Association Française de Normalisation, Saint-Denis, http://www.afnor.org (access date January 11, 2008).

17. Simöes, C.M.O. and V. Spitzer, 1999. Óleos voláteis. In Farmacognosia: da planta ao medicamento, C.M.O. Simöes, et al. (eds), Chap. 18. Florianópolis: Editora da UFSC and Editora da Universidade/UFRGS.

18. Bosart, L.W., 1937. Perfumery Essential Oil Record, 28: 95.

19. Beilstein, F., 1872. Ueber den Nachweis von Chlor, Brom und Jod in organischen Substanzen. Ber. Dtscg. Chem. Ges., 5: 620.

20. Panda, H., 2003. Essential Oils Handbook, Chap. 110, 1st ed. New Delhi: National Institute of Industrial Research.

21. Stillman, R.C. and R.M. Reed, 1932. Hydroxylamine method for the determination of aldehydes and ketones in essential oils. Perfumery Essential Oil Record, 23: 278.

22. Poole, C.F., 2003. The Essence of Chromatography, 1st ed. Amsterdam: Elsevier.

23. Falkenberg, M.B., R.I. Santos, and C.M.O. Simöes, 1999. Introduçao à Análise Fitoquímica. In Farmacognosia: da planta ao medicamento, Chap. 10, C.M.O. Simöes, et al. (eds), 1999. Florianópolis: Editora da UFSC and Editora da Universidade/UFRGS.

24. Wagner, H., S. Bladt, and V. Rickl, 2003. Plant Drug Analysis: A Thin Layer Chromatography Atlas, 2nd ed., p. 1. Heidelberg: Springer.

25. Hahn-Deinstrop, E., 2000. Applied Thin Layer Chromatography: Best Practice and Avoidance of Mistakes, Chap.1, 2nd ed. Weinheim: Wiley-VCH.

26. Sherma, J., 2000. Thin-layer chromatography in food and agricultural analysis. J. Chromatogr. A, 880: 129.

27. Richardson, A., 1999. Measurement of fragrance perception. In The Chemistry of Fragrances, Chap. 8, D.H. Pybus and C.S. Sell (eds). Cambridge: Royal Society of Chemistry.

28. Friedrich, J.E., T.E. Acree, and E.H. Lavin, 2001. Selecting standards for gas chromatography-olfactometry. In Gas Chromatography-Olfactometry: The State of the Art, Chap. 13, J.V. Leland, et al. (eds). Washington, DC: American Chemical Society.

29. Curtis, T. and D.G. Williams, 2001. Introduction to Perfumery, Chap. 3, 2nd ed. New York: Micelle Press.

30. Ettre, L.S. and J.V. Hinshaw, 1993. Basic Relationships of Gas Chromatography, Chap. 4, 1st ed. Cleveland: Advanstar Data.

31. Liberti, A. and G. Conti, 1956. Possibilità di applicazione della cromatografia in fase gassosa allo studio della essenza. In Proc. 1° Convegno Internazionale di Studi e Ricerche sulle Essenze. Italy: Reggio Calabria.

32. James, A.T. and A.J.P. Martin, 1952. Gas-liquid partition chromatography: The separation and microestimation of volatile fatty acids from formic acid to dodecanoic acid. Biochem. J., 50: 679.

33. Scott, R.P.W. Gas Chromatography, Chrom Ed. Series, 2001, http://www.chromatography-online.org/ (access date December 15, 2007).

34. Kováts, E., 1958. Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retention-sindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv. Chim. Acta, 51: 1915.

35. van den Dool, H. and P.D. Kratz, 1963. A generalization of the retention index system including linear temperature programmed gas-liquid chromatography. J. Chromatogr., 11: 463.

36. Shibamoto, T., 1987. Retention indices in essential oil analysis. In Capillary Gas Chromatography in Essential Oil Analysis, S. Sandra and C. Bicchi (eds), Chap. 8, 1st ed. Heidelberg: Alfred Huethig Verlag.

37. International Organization of the Flavor Industry (I.O.F.I), 1991. The identification of individual components in flavourings and flavoured food. Z. Lebensm. Unters. Forsch., 192: 530.

38. Davies, N.W., 1990. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicone and Carbowax 20 M phases. J. Chromatogr, 503: 1.

39. Royal Society of Chemistry, 1981. Analytical Methods Committee, Application of gas-liquid chroma-tography to the analysis of essential oils, Part VIII. Fingerprinting of essential oils by temperature-programmed gas-liquid chromatography using methyl silicone stationary phases. Analyst, 106: 448.

40. Royal Society of Chemistry, 1980. Analytical Methods Committee, Application of gas-liquid chromatography to the analysis of essential oils, Part VIII. Fingerprinting of essential oils by temperature-programmed gas-liquid chromatography using a Carbowax 20 M stationary phase. Analyst, 105: 262.

41. Todd, J.F.J., 1995. Recommendations for nomenclature and symbolism for mass spectroscopy. Int. J. Mass Spectrom. Ion Process, 142: 209.

42. Vekey, K., 2001. Mass spectrometry and mass-selective detection in gas chromatography. J. Chromatogr. A, 921: 227.

43. McLafferty, F.W., D.A. Stauffer, S.Y. Loh, and C. Wesdemiotis, 1999. Unknown identification using reference mass spectra. Quality evaluation of databases. J. Am. Soc. Mass Spectrom., 10: 1229.

44. Costa, R., M.R. De Fina, M.R. Valentino, P. Dugo, and L. Mondello, 2007. Reliable identification of terpenoids and related compounds by using linear retention indices interactively with mass spectrometry search. Nat. Product Commun., 2: 413.

45. Joulain, D. and W.A. König, 1998. The Atlas of Spectral Data of Sesquiterpene Hydrocarbons, 1st ed., pp. 1-6. Hamburg: E.B.-Verlag.

46. Korytar, P., H.G. Janssen, E. Matisova, and U.A.T. Brinkman, 2002. Practical fast gas chromatography: Methods, instrumentation and applications. TrAC, 21: 558.

47. Cramers, C.A., H.G. Janssen, M.M. van Deursen, and P.A. Leclercq, 1999. High-speed gas chromato-graphy: An overview of various concepts. J. Chromatogr. A, 856: 315.

48. Cramers, C.A. and P.A. Leclercq, 1999. Strategies for speed optimisation in gas chromatography: An overview. J. Chromatogr. A, 842: 3.

49. Mondello, L., A. Casilli, P.Q. Tranchida, L. Cicero, P. Dugo, and G. Dugo, 2003. Comparison of fast and conventional GC analysis for citrus essential oils. J. Agric. Food. Chem., 51: 5602.

50. Mondello, L., R. Shellie, A. Casilli, P.Q. Tranchida, P. Marriott, and G. Dugo, 2004. Ultra-fast essential oil characterization by capillary GC on a 50 mm ID column. J. Sep. Sci., 27: 699-702.

51. Bicchi, C., C. Brunelli, C. Cordero, P. Rubiolo, M. Galli, and A. Sironi, 2004. Direct resistively heated column gas chromatography (ultrafast module-GC) for high-speed analysis of essential oils of differing complexities. J. Chromatogr. A, 1024: 195.

52. Bicchi, C., C. Brunelli, C. Cordero, P. Rubiolo, M. Galli, and A. Sironi, 2005. High-speed gas chroma-tography with direct resistively-heated column (ultra fast module-GC)-separation measure (S) and other chromatographic parameters under different analysis conditions for samples of different complexities and volatilities. J. Chromatogr. A, 1071: 3.

53. Mondello, L., A. Casilli, P.Q. Tranchida, L. Cicero, P. Dugo, A. Cotroneo, and G. Dugo, 2004. Deter-minazione della Composizione e Individuazione delle Adulterazioni degli Olii Essenziali mediante Ultrafast-GC. In Qualita e sicurezza degli Alimenti, pp. 113-116. Milan: Morgan Edizioni Scientifiche.

54. Tranchida, P.Q., A. Casilli, G. Dugo, L. Mondello, and P. Dugo, 2005. Fast gas chromatographic analysis with a 0.05 mm ID micro-bore capillary column. G.I.T. Lab. J., 9: 22.

55. Bicchi, C., C. Brunelli, M. Galli, and A. Sironi, 2001. Conventional inner diameter short capillary columns: An approach to speeding up gas chromatographic analysis of medium complexity samples. J. Chromatogr. A, 931: 129.

56. Rubiolo, P., F. Belliardo, C. Cordero, E. Liberto, B. Sgorbini, and C. Bicchi, 2006. Headspace-solid-phase microextraction fast GC in combination with principal component analysis as a tool to classify different chemotypes of chamomile flower-heads (Matricaria recutita L.). Phytochem. Anal, 17: 217.

57. Proot, M. and P. Sandra, 1986. Resolution of triglycerides in capillary SFC as a function of column temperature. J. HighRes. Chromatogr. Chromatogr. Commun, 9: 618.

58. Firestein, S., 1992. Electrical signals in olfactory transduction. Curr. Opin. Neurobiol., 2: 444.

59. Firestein, S., 2001. How the olfactory system makes sense of scents. Nature, 413: 211.

60. Malnic, B., J. Hirono, T. Sato, and L.B. Buck, 1999. Combinatorial receptor codes for odors. Cell, 96: 713.

61. Grosch, W., 1994. Determination of potent odourants in foods by aroma extract dilution analysis (AEDA) and calculation of odour activity values (OAVs). Flavour Fragr. J, 9: 147.

62. van Ruth, S.M., 2001. Methods for gas chromatography-olfactometry: A review. Biomolec. Eng., 17: 121.

63. Fuller, G.H., R. Seltenkamp, and G.A. Tisserand, 1964. The gas chromatograph with human sensor: Perfumer model. Ann. NY Acad. Sci., 116: 711.

64. Nishimura, O., 1995. Identification of the characteristic odorants in fresh rhizomes of ginger (Zingiber oficinale Roscoe) using aroma extract dilution analysis and modified multidimensional gas chromatography-mass spectroscopy. J. Agric. Food Chem., 43: 2941.

65. Wright, D.W., 1997. Application of multidimensional gas chromatography techniques to aroma analysis. In Techniques for Analyzing Food Aroma (Food Science and Technology), Chap. 5, R. Marsili (ed.), 1st ed. New York: Marcel Dekker.

66. McGorrin, R.J., 2002. Character impact compounds: Flavors and off-flavors in foods. In Flavor, Fragrance, and Odor Analysis, Chap. 14, R. Marsili (ed.), 1st ed. New York: Marcel Dekker.

67. Acree, T.E., J. Barnard, and D. Cunningham, 1984. A procedure for the sensory analysis of gas chromatographic effluents. Food Chem., 14: 273.

68. Ullrich, F., W. Grosch, 1987. Identification of the most intense volatile flavour compounds formed during autoxidation of linoleic acid. Z. Lebensm. Unters. Forsch., 184: 277.

69. Gaffney, B.M., M. Haverkotte, B. Jacobs, and L. Costa, 1996. Charm Analysis of two Citrus sinensis peel oil volatiles. Perf. Flav., 21: 1.

70. Song, H.S., M. Sawamura, T. Ito, K. Kawashimo, and H. Ukeda, 2000. Quantitative determination and characteristic flavour of Citrus junos (yuzu) peel oil. Flavour Fragr. J., 15: 245.

71. Song, H.S., M. Sawamura, T. Ito, A. Ido, and H. Ukeda, 2000. Quantitative determination and characteristic flavour of daidai (Citrus aurantium L. var. cyathifera Y. Tanaka) peel oil. Flavour Fragr. J., 15: 323.

72. McDaniel, M.R., R. Miranda-Lopez, B.T. Watson, N.J. Michaels, and L.M. Libbey, 1990. Pinot noir aroma: A sensory/gas chromatographic approach. In Flavors and Off-Flavors (Developments in Food Science Vol. 24), G. Charalambous (ed.), pp. 23-26. Amsterdam: Elsevier Science Publishers.

73. Lin, J. and R.L. Rouseff, 2001. Characterization of aroma-impact compounds in cold-pressed grapefruit oil using time-intensity GC-olfactometry and GC-MS. Flavour Fragr. J, 16: 457-463.

74. Linssen, J.P.H., J.L.G.M. Janssens, J.P. Roozen, and M.A. Posthumus, 1993. Combined gas chromatog-raphy and sniffing port analysis of volatile compounds of mineral water packed in polyethylene laminated packages. Food Chem., 46: 367.

75. Pollien, P., A. Ott, F. Montigon, M. Baumgartner, R. Muñoz-Box, and A. Chaintreau, 1997. Hyphenated headspace-gas chromatography-sniffing technique: Screening of impact odorants and quantitative aromagram comparisons. J. Agric. Food Chem., 45: 2630.

76. d'Acampora Zellner, B., M. Lo Presti, L.E.S. Barata, P. Dugo, G. Dugo, and L. Mondello, 2006. Evaluation of leaf-derived extracts as an environmentally sustainable source of essential oils by using gas chromatography-mass spectrometry and enantioselective gas chromatography-olfactometry. Anal. Chem., 78: 883.

77. Casimir, D.J. and F.B. Whitfield, 1978. Flavour impact values, a new concept for assigning numerical values for the potency of individual flavour components and their contribution to the overall flavour profile. Ber. Int. Fruchtsaftunion., 15: 325.

78. Jirovetz, L., G. Buchbauer, M.B. Ngassoum, and M. Geissler, 2002. Aroma compound analysis of Piper nigrum and Piper guineense essential oils from Cameroon using solid-phase microextraction-gas chromatography, solid-phase microextraction-gas chromatography-mass spectrometry and olfactometry. J. Chromatogr. A, 976: 265.

79. Jirovetz, L. and M.B. Ngassoum, 1999. Olfactory evaluation and CG/MS analysis of the essential oil of leaves and flowers of Hyptispectinata (L.) Poit. From Cameroon. SoFW J., 125: 35.

80. Sybilska, D. and T. Koscielski, 1983. ß-cyclodextrin as a selective agent for the separation of o-, m- and p-xylene and ethylbenzene mixtures in gas-liquid chromatography. J. Chromatogr., 261: 357.

81. Schurig, V. and H.P. Nowotny, 1988. Separation of enantiomers on diluted permetylated b-cyclodextrin by high-resolution gas chromatography. J. Chromatogr., 441: 155.

82. König, W.A., 1991. Gas Chromatographic Enantiomer Separation with Modified Cyclodextrins, 1st ed. Heidelberg: Hüthig.

83. Nowotny, H.P., D. Schmalzing, D. Wistuba, and V. Schurig, 1989. Extending the scope of enantiomer separation on diluted methylated ß-cyclodextrin derivatives by high-resolution gas chromatography. J. High Res. Chromatogr., 12: 383.

84. Dugo, G., G. Lamonica, A. Cotroneo, I. Stagno D'Alcontres, A. Verzera, M.G. Donato, P. Dugo, and G. Licandro, 1992. High resolution gas chromatography for detection of adulterations of citrus cold-pressed essential oils. Perf. Flav., 17: 57-74.

85. Bicchi, C., A. D'Amato, V. Manzin, and P. Rubiolo, 1997. Cyclodextrin derivatives in GC separation of racemic mixtures of volatiles. Part XI. Some applications of cyclodextrin derivatives in GC enantiosepa-rations of essential oil components. Flavour Fragr. J., 12: 55.

86. König, W.A., 1998. Enantioselective capillary gas chromatography in the investigation of stereochemical correlations of terpenoids. Chirality, 10: 499.

87. Bicchi, C., A. D'Amato, and P. Rubiolo, 1999. Cyclodextrin derivatives as chiral selectors for direct gas chromatographic separation of enantiomers in the essential oil, aroma and flavour fields. J. Chromatogr. A, 843: 99.

88. Lee, M.L., F.J. Yang, and K.D. Bartle, 1984. Open Tubular Column Gas Chromatography, Chap. 2, 1st ed. New York: Wiley.

89. Rubiolo, P., E. Liberto, C. Cagliero, B. Sgorbini, C. Bicchi, B. d'Acampora Zellner, and L. Mondello, 2007. Linear retention indices in enantioselective GC-mass spectrometry (Es-GC-MS) as a tool to identify enantiomers in flavour and fragrance fields. In Proc. 38th Int. Symp. on Essential Oils, Graz.

90. Lehmann, D., A. Dietrich, U. Hener, and A. Mosandl, 1995. Stereoisomer^ flavour compounds LXX, 1-p-menthene-8-thiol: Separation and sensory evaluation of the enantiomers by enantioselective gas chromatography/olfactometry. Phytochem. Anal., 6: 255.

91. Boelens, M.H. and H. Boelens, 1993. Sensory properties of optical isomers. Perf. Flav., 18: 2.

92. Di Giacomo, A. and B. Mincione, 1994. Gli Olii Essenziali Agrumari in Italia, Chap. 3. Reggio Calabria: Baruffa editore.

93. Dugo, P., L. Mondello, E. Cogliro, A. Verzera, and G. Dugo, 1996. On the genuineness of citrus essential oils. 51. Oxygen heterocyclic compounds of bitter orange oil (Citrus aurantium L.). J. Agric. Food Chem., 44: 544-549.

94. Mc Hale, D. and J.B. Sheridan, 1989. The oxygen heterocyclic compounds of citrus peel oils. J. Essent. Oil Res., 1: 139.

95. Mc Hale, D. and J.B. Sheridan, 1988. Detection of adulteration of cold-pressed lemon oil. Flavour Fragr. J., 3: 127.

96. Benincasa, M., F. Buiarelli, G. P. Cartoni, and F. Coccioli, 1990. Analysis of lemon and bergamot essential oils by HPLC with microbore columns. Chromatographia, 30: 271.

97. Buiarelli, F., G.P. Cartoni, F. Coccioli, and T. Leone, 1996. Analysis of bitter essential oils from orange and grapefruit by high-performance liquid chromatography with microbore columns. J. Chromatogr. A, 730: 9.

98. Buiarelli, F., G.P. Cartoni, F. Coccioli, and E. Ravazzi, 1991. Analysis of orange and mandarin essential oils by HPLC. Chromatographia, 31: 489.

99. Dugo, P., L. Mondello, E. Sebastiani, R. Ottana, G. Errante, and G. Dogo, 1999. Identification of minor oxygen heterocyclic compounds of citrus essential oils by liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry. J. Liq. Chrom. Rel. Technol., 22: 2991.

100. Piry, J. and A. Pribela, 1994. Application of high-performance liquid chromatography to the analysis of the complex volatile mixture of blackcurrant buds (Ribes nigrum L.). J. Chromatogr. A, 665: 104.

101. Dugo, G., K.D. Bartle, I. Bonaccorsi, M. Catalfamo, A. Cotroneo, P. Dugo, G. Lamonica, et al., 1999. Advanced analytical techniques for the analysis of citrus essential oils. Part 1. Volatile fraction: HRGC/ MS analysis. Essenze Derivati Agrumari, 69: 79.

102. Deans, D.R., 1968. A new technique for heart cutting in gas chromatography. Chromatographia, 1: 18.

103. Mosandl, A., 1995. Enantioselective capillary gas chromatography and stable isotope ratio mass spectrometry in the authenticity control of flavours and essential oils. Food Rev. Int., 11: 597.

104. Mondello, L., M. Catalfamo, P. Dugo, and G. Dugo, 1998. Multidimensional capillary GC-GC for the analysis of real complex samples. Part II. Enantiomeric distribution of monoterpene hydrocarbons and monoterpene alcohols of cold-pressed and distilled lime oils. J. Microcol. Sep, 10: 203.

105. Mondello, L., M. Catalfamo, A.R. Proteggente, I. Bonaccorsi, and G. Dugo, 1998. Multidimensional capillary GC-GC for the analysis of real complex samples. 3. Enantiomeric distribution of monoterpene hydrocarbons and monoterpene alcohols of mandarin oils. J. Agric. Food Chem., 46: 54.

106. Mondello, L., M. Catalfamo, G. Dugo, G. Dugo, and H. McNair, 1999. Multidimensional capillary GC-GC for the analysis of real complex samples. Part IV. Enantiomeric distribution of monoterpene hydrocarbons and monoterpene alcohols of lemon oils. J. High Res. Chromatogr, 22: 350-356.

107. Hener, U., P. Kreis, and A. Mosandl, 1990. Enantiomeric distribution of a-pinene, b-pinene and limonene in essential oils and extracts. Part 1. Rutaceae and Gramineae. Flavour Fragr. J., 5: 193.

108. Kreis, P. and A. Mosandl, 1992. Chiral compounds of essential oils. Part XII. Authenticity control of rose oils, using enantioselective multidimensional gas chromatography. Flavour Fragr. J., 7: 199.

109. Kopke, T., A. Dietrich, and A. Mosandl, 1994. Chiral compounds of essential oils XIV: Simultaneous stereoanalysis of buchu leaf oil compounds. Phytochem. Anal., 5: 61.

110. Faber, B., A. Dietrich, and A. Mosandl, 1994. Chiral compounds of essential oils XV: Stereodifferentiation of characteristic compounds of Mentha species by multidimensional gas chromatography. J. Chromatogr., 666: 161.

111. Mondello, L., A. Casilli, P.Q. Tranchida, M. Furukawa, K. Komori, K. Miseri, P. Dugo, and G. Dugo, 2006. Fast enantiomeric analysis of a complex essential oil with an innovative multidimensional gas chromatographic system. J. Chromatogr. A, 1105: 11-16.

112. Liu, Z., and J.B. Phillips, 1991. Comprehensive 2-dimensional gas chromatography using an on-column thermal modulator interface. J. Chromatogr. Sci., 1067: 227.

113. Phillips, J.B. and J. Beens, 1999. Comprehensive two-dimensional gas chromatography: A hyphenated method with strong coupling between the two dimensions. J. Chromatogr. A, 856: 331.

114. Adahchour, M., J. Beens, R.J.J. Vreuls, and U.A.Th. Brinkman, 2006. Recent developments in comprehensive two-dimensional gas chromatography (GC X GC) IV. Further applications, conclusions and perspectives. TrAC, 25: 821.

115. Schoenmakers, P., P. Marriott, and J. Beens, 2003. Nomenclature and conventions in comprehensive multidimensional chromatography. LC-GC Eur, 16: 335-339.

116. Dimandja, J.M.D., S.B. Stanfill, J. Grainger, and D.G. Patterson, 2000. Application of comprehensive two-dimensional gas chromatography (GC X GC) to the qualitative analysis of essential oils. J. High Res. Chromatogr., 23: 208-214.

117. Marriott, P., R. Shellie, J. Fergeus, R. Ong, and P. Morrison, 2000. High resolution essential oil analysis by using comprehensive gas chromatographic methodology. Flavour Fragr. J, 15: 225-239.

118. Marriott, P. and R. Kinghorn, 1999. Cryogenic solute manipulation in gas chromatography—the longitudinal modulation approach. TrAC, 18: 114.

119. Shellie, R., P. Marriott, and P. Morrison, 2000. Characterization and comparison of tea tree and lavender oils by using comprehensive gas chromatography. J. High Resolution Chromatogr, 23: 554-560.

120. Shellie, R., P. Marriott, and P. Morrison, 2001. Concepts and preliminary observations on the triple-dimensional analysis of complex volatile samples by using GC X GC-TOFMS. Anal. Chem., 73: 1336.

121. Shellie, R., L. Mondello, P. Marriott, and G. Dugo, 2002. Characterisation of lavender essential oils by using gas chromatography-mass spectrometry with correlation of linear retention indices and comparison with comprehensive two-dimensional gas chromatography. J. Chromatogr. A, 970: 225-234.

122. Cordero, C., P. Rubiolo, B. Sgorbini, M. Galli, and C. Bicchi, 2006. Comprehensive two-dimensional gas chromatography in the analysis of volatile samples of natural origin: A multidisciplinary approach to evaluate the influence of second dimension column coated with mixed stationary phases on system orthogonality. J. Chromatogr. A, 1132: 268.

123. Shellie, R., P. Marriott, and P. Morrison, 2004. Comprehensive two-dimensional gas chromatography with flame ionization and time-of-flight mass spectrometry detection: Qualitative and quantitative analysis of West Australian sandalwood oil. J. Chromatogr. Sci., 42: 417.

124. Ozel, M.Z., F. Gogus, and A.C. Lewis, 2003. Subcritical water extraction of essential oils from Thymbra spicata. Food Chem, 82: 381.

125. Ozel, M.Z., F. Gogus, J.F. Hamilton, and A.C. Lewis, 2004. The essential oil of Pistacia vera L. at various temperatures of direct thermal desorption using comprehensive gas chromatography coupled with time-of-flight mass spectrometry. Chromatographia, 60: 79.

126. Roberts, M.T., J.P. Dufour, and A.C. Lewis, 2004. Application of comprehensive multidimensional gas chromatography combined with time-of-flight mass spectrometry (GC X GC-TOFMS) for high resolution analysis of hop essential oil. J. Sep. Sci., 27: 473.

127. Ozel, M.Z., F. Gogus, and A.C. Lewis, 2006. Determination of Teucrium chamaedrys volatiles by using direct thermal desorption-comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J. Chromatogr. A, 1114: 164.

128. Ozel, M.Z., F. Gogus, and A.C. Lewis, 2006. Comparison of direct thermal desorption with water distillation and superheated water extraction for the analysis of volatile components of Rosa damascena Mill. Using GC X GC-TOF/MS. Anal. Chim. Acta, 566: 172.

129. Eyres, G., P.J. Marriott, and J.P. Dufour, 2007. The combination of gas chromatography-olfactometry and multidimensional gas chromatography for the characterisation of essential oils. J. Chromatogr. A, 150: 70.

130. Ma, C., H. Wang, X. Lu, H. Li, B. Liu, and G. Xu, 2007. Analysis of Artemisia annua L. volatile oil by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. J. Chromatogr. A, 1150: 50.

131. Zhu, S., X. Lu, Y. Qiu, T. Pang, H. Kong, C. Wu, and G. Xu, 2007. Determination of retention indices in constant inlet pressure mode and conversion among different column temperature conditions in comprehensive two-dimensional gas chromatography. J. Chromatogr. A, 1150: 28.

132. Dugo, P., M.D. Fernandez, A. Cotroneo, and G. Dugo, 2006. Optimization of a comprehensive two-dimensional normal-phase and reversed phase-liquid chromatography system. J. Chromatogr. Sci., 44: 1.

133. Dugo, P., O. Favoino, R. Luppino, G. Dugo, and Mondello, L., 2004. Comprehensive two-dimensional normal-phase (adsorption)-reversed-phase liquid chromatography. Anal. Chem, 73: 2525-2530.

134. François, I.D., A. Villiers, and P. Sandra, 2006. Considerations on the possibilities and limitations of comprehensive normal phase-reversed phase liquid chromatography (NPLC X RPLC). J. Sep. Sci., 29: 492.

135. Dugo, P., M. Herrero, T. Kumm, D. Giuffrida, G. Dugo, and L. Mondello, Comprehensive normalphase X reversed-phase liquid chromatography coupled to photodiode array and mass spectrometry detectors for the analysis of free carotenoids and carotenoid esters from mandarin. J. Chromatogr. A, 2008, in press.

136. Dugo, P., V. Skenkova, T. Kumm, A. Trozzi, P. Jandera, and L. Mondello, 2006. Elucidation of carote-noid patterns in citrus products by means of comprehensive normal-phase x reversed-phase liquid chromatography. Anal. Chem., 78: 7743-7750.

137. Grob, K., 1987. On-line coupled HPLC-HRGC. In Proc. 8th Int. Symp. on Capillary Chromatography. Italy: Riva del Garda.

138. Mondello, L., K.D. Bartle, G. Dugo, and P. Dugo, 1994. Automated HPLC-HRGC: A powerful method for essential oils analysis. Part III. Aliphatic and terpene aldehydes of orange oil. J. High Resol. Chromatogr., 17: 312.

139. Mondello, L., P. Dugo, K.D. Bartle, G. Dugo, and A. Cotroneo, 1995. Automated HPLC-HRGC: A powerful method for essential oils analysis. Part V. Identification of terpene hydrocarbons of bergamot, lemon, mandarin, sweet orange, bitter orange, grapefruit, clementine and Mexican lime oils by coupled HPLC-HRGC-MS(ITD). Flavour Fragr. J, 10: 33.

140. Dugo, G., A. Verzera, A. Trozzi, A. Cotroneo, L. Mondello, and K.D. Bartle, 1994. Automated HPLC-HRGC: A powerful method for essential oils analysis. Part I. Investigation on enantiomeric distribution of monoterpene alcohols of lemon and mandarin essential oils. Essenz. Deriv. Agrum., 64: 35.

141. Dugo, G., A. Verzera, A. Cotroneo, I. Stagno d'Alcontres, L. Mondello, and K.D. Bartle, 1994. Automated HPLC-HRGC: A powerful method for essential oil analysis. Part II. Determination of the enantiomeric distribution of linalool in sweet orange, bitter orange and mandarin essential oils. Flavour Fragr. J., 9: 99.

142. Mondello, L., P. Dugo, K.D. Bartle, B. Frere, and G. Dugo, 1994. On-line high performance liquid chromatography coupled with high resolution gas chromatography and mass spectrometry (HPLC-HRGC-MS) for the analysis of complex mixtures containing highly volatile compounds. Chromatographia, 39: 529.

143. Mondello, L., P. Dugo, G. Dugo, and K.D. Bartle, 1996. On-line HPLC-HRGC-MS for the analysis of natural complex mixtures. J. Chromatogr. Sci., 34: 174.

Was this article helpful?

0 0
Aromatheray For Cynics

Aromatheray For Cynics

This eBook explains how Aromatherapy has something to do with scents and smells treating illnesses and conditions. Many people who do not like the sometimes-unpleasant side effects of prescribed medication, particularly for depression, stress, or other similar disorders, have opted to use aromatherapy to help reach the desired state of being.

Get My Free Ebook


Post a comment