References

Abraham, W.-R., H.-A. Arfmann, B. Stumpf, P. Washausen, and K. Kieslich, 1988. Microbial transformations of some terpenoids and natural compounds. In: Bioflavour'87. Analysis—Biochemistry—Biotechnology, P. Schreier, ed., pp. 399-414. Berlin: Walter de Gruyter and Co. Abraham, W.-R., H.M.R. Hoffmann, K. Kieslich, G. Reng, and B. Stumpf, 1985. Microbial transformation of some monoterpenes and sesquiterpenoids. In: Enzymes in Organic Synthesis, R. Porter and S. Clark, Ciba Foundation Symposium 111, pp. 146-160. London: Pitman Press. Abraham, W.-R., K. Kieslich, H. Reng, and B. Stumpf, 1984. Formation and production of 1,2-trans-glycols from various monoterpenes with 1-menthene skeleton by microbial transformations with Diplodia gossypina. In: 3rdEuropean Congr. on Biotechnology, Vol. 1, pp. 245-248. Verlag Chemie, Weinheim. Abraham, W.-R., B. Stumpf, and H.-A. Arfmann, 1990. Chiral intermediates by microbial epoxidations.

J. Essent. Oil Res., 2: 251-257. Abraham, W.-R., B. Stumpf, and K. Kieslich, 1986. Microbial transformation of terpenoids with 1-p-menthene skeleton. Appl. Microbiol. Biotechnol., 24: 24-30. Amsterdam, D. 1997. Susceptibility Testing of Antimicrobials in Liquid Media. In: Antibiotics in Laboratory

Medicine, V. Lorian, ed., 4th ed. Maryland, USA: Williams & Wilkins, Maple Press. Asakawa, Y., H. Takahashi, M. Toyota, Y. and Noma, 1991. Biotransformation of monoterpenoids, (-)- and (+)-menthols, terpionolene and carvotanacetone by Aspergillus species. Phytochemistry, 30: 3981-3987. Asakawa, Y., M. Toyota, T. Ishida, T. Takemoto, 1983. Metabolites in rabbit urine after terpenoid administration. Proc. 27th TEAC, pp. 254-256. Atta-ur-Rahman, M. Yaqoob, A. Farooq, S. Anjum, F. Asif, and M.I. Choudhary, 1998. Fungal transformation of (1R,2S,5R)-(-)-menthol by Cephalosporium aphidicola. J. Nat. Prod., 61: 1340-1342. Ausgulen, L.T., E. Solheim, and R.R. Scheline, 1987. Metabolism in rats of p-cymene derivatives: Carvacrol and thymol. Pharmacol. Toxicol., 61: 98-102. Babcka, J., J. Volf, J. Czchec, and P. Lebeda, 1956. Patent 56-9686b.

Ballal, N.R., P.K. Bhattacharyya, and P.N. Rangachari, 1967. Microbiological transformation of terpenes. Part

XIV. Purification and properties of perillyl alcohol dehydrogenase. Indian J. Biochem., 5:1-6. Bauer, K., D. Garbe, and H. Surburg (eds.), 1990. Common Fragrance and Flavor Materials: Preparation, Properties and Uses. 2nd revised ed., 218pp. New York: VCH Publishers.Best, D.J. and K.J. Davis, 1988. Soap, perfumery and Cosmetics 4: 47. Best, D.J., N.C. Floyd, A. Magalhaes, A. Burfield, and P.M. Rhodes, 1987. Initial enzymatic steps in the degradation of alpha-pinene by Pseudomonas fluorescens Ncimb 11671. Biocatal. Biotransform., 1: 147-159. Bhattacharyya, P.K. and K. Ganapathy, 1965. Microbial transformation of terpenes. VI. Studies on the mechanism of some fungal hydroxylation reactions with the aid of model systems. Indian J. Biochem., 2: 137-145.

Bhattacharyya, P.K., B.R. Prema, B.D. Kulkarni, and S.K. Pradhan, 1960. Microbiological transformation of terpenes: Hydroxylation of a-pinene. Nature, 187: 689-690. Bock, G., I. Benda, and P. Schreier, 1986. Biotransformation of linalool by Botrytis cinerea. J. Food Sci., 51: 659-662.

Bock, G., I. Benda, and P. Schreier, 1988. Microbial transformation of geraniol and nerol by Botrytis cinerea.

Appl. Microbiol. Biotechnol., 27: 351-357. Bouwmester, H.J., J.A.R. Davies, and H. Toxopeus, 1995. Enantiomeric composition of carvone, limonene, and carveols in seeds of dill and annual and biennial caraway varieties. J. Agric. Food Chem., 43: 3057-3064.

Bowen, E.R., 1975. Potential by-products from microbial transformation of d-limonene, Proc. Fla. State Hortic. Soc., 88: 304-308.

Bradshaw, W.H., H.E. Conrad, E.J. Corey, I.C. Gunsalus, and D. Lednicer, 1959. Microbiological degradation of (+)-camphor. J. Am. Chem. Soc., 81: 5507. Brit Patent, 1970, No. 1,187,320.

Brunerie, P., I. Benda, G. Bock, and P. Schreier, 1987a. Bioconversion of citronellol by Botrytis cinerea. Appl.

Microbiol. Biotechnol., 27: 6-10. Brunerie, P., I. Benda, G. Bock, and P. Schreier, 1987b. Biotransformation of citral by Botrytis cinerea.

Z. Naturforsch., 42C: 1097-1100. Brunerie, P., I. Benda, G. Bock, and P. Schreier, 1988. Bioconversion of monoterpene alcohols and citral by Botrytis cinerea. In: Bioflavour'87. Analysis—Biochemistry—Biotechnology, P. Schreier, ed., pp. 435-444. Berlin: Walter de Gruyter and Co. Busmann, D. and R.G. Berger, 1994. Conversion of myrcene by submerged cultured basidiomycetes. J. Biotechol., 37: 39-43.

Cadwallander, K.R., R.J. Braddock, M.E. Parish, and D.P. Higgins, 1989. Bioconversion of (+)-limonene by

Pseudomonas gladioli. J. Food Sci., 54: 1241-1245. Cadwallader, K.R. and R.J. Braddock, 1992. Enzymatic hydration of (4R)-(+)-limonene to (4R)-(+)-alpha-

terpineol. Dev. Food Sci., 29: 571-584. Cantwell, S.G., E.P. Lau, D.S. Watt, and R.R. Fall, 1978. Biodegradation of acyclic isoprenoids by Pseudomonas species. J. Bacteriol., 135: 324-333. Chamberlain, E.M. and S. Dagley, 1968. The metabolism of thymol by a Pseudomonas. Biochem. J., 110: 755-763.

Chapman, P.J., G. Meerman, and I.C. Gunsalus, 1965. The microbiological transformation of fenchone.

Biochem. Biophys. Res. Commun., 20: 104-108. Chapman, P.J., G. Meerman, I.C. Gunsalus, R. Srinivasan, and K.L. Rinehart Jr., 1966. A new acyclic acid metabolite in camphor oxidation. J. Am. Chem. Soc, 88: 618-619. Christensen, M. and D.E. Tuthill, 1985. Aspergillus: An overview. In: Advances in Penicillium and Aspergillus

Systematics, R.A. Samson and J.I. Pitt, eds, pp. 195-209. New York: Plenum Press. Conrad, H.E., R. DuBus, and I.C. Gunsalus, 1961. An enzyme system for cyclic ketone lactonization, Biochem.

Biophys. Res. Commun., 6: 293-297. Conrad, H.E., R. DuBus, M.J. Mamtredt, and I.C. Gunsalus, 1965a. Mixed function oxidation II. Separation and properties of the enxymes catalyzing camphor ketolactonization. J. Biol. Chem., 240: 495-503. Conrad, H.E., K. Lieb, and I.C. Gunsalus, 1965b. Mixed function oxidation III. An electron transport complex in camphor ketolactonization. J. Biol. Chem., 240: 4029-4037. David, L. and H. Veschambre, 1984. Preparation d'oxydes de linalol par bioconversion. Tetrahadron Lett., 25: 543-546.

David, L. and H. Veschambre, 1985. Oxidative cyclization of linalol by various microorganisms. Agric. Biol. Chem, 49: 1487-1489.

DeFrank, J.J. and D.W. Ribbons, 1977a. p-Cymene pathway in Pseudomonas putida: Initial reactions.

J. Bacteriol., 129: 1356-1364. DeFrank, J.J. and D.W. Ribbons, 1977b. p-Cymene pathway in Pseudomonas putida: Ring cleavage of 2,3-di-

hydroxy-p-cumate and subsequent reactions. J. Bacteriol., 129: 1365-1374. Demirci, F., 2000. Microbial transformation of bioactive monoterpenes. Ph.D. thesis, pp. 1-137. Anadolu

University, Eskisehir, Turkey. Demirci, F., H. Berber, and K.H.C. Baser, 2007. Biotransformation of p-cymene to thymoquinone. Book of

Abstracts of the 38th ISEO, SL-1, p. 6. Demirci, F., N. Kirimer, B. Demirci, Y. Noma, and K.H.C. Baser, 2001. The biotransformation of thymol methyl ether by different fungi. XIIBiotechnology Congr., Book of abstracts, p. 47. Demirci, F., Y. Noma, N. Kirimer, and K.H.C. Baser, 2004. Microbial transformation of (-)-carvone.

Z. Naturforsch., 59c: 389-392. Demyttenaere, J.C.R. and H.L. De Pooter, 1996. Biotransformation of geraniol and nerol by spores of Penicillium italicum. Phytochemistry, 41: 1079-1082.

Demyttenaere, J.C.R. and H.L. De Pooter, 1998. Biotransformation of citral and nerol by spores of Penicillium digitatum. Flav. Fragr. J., 13: 173-176. Demyttenaere, J.C.R., M. del Carmen Herrera, and N. De Kimpe, 2000. Biotransformation of geraniol, nerol and citral by sporulated surface cultures of Aspergillus niger and Penicillium sp. Phytochemistry, 55: 363-373. Demyttenaere, J.C.R., I.E.I. Koninckx, and A. Meersman, 1996. Microbial production of bioflavours by fungal spores. In: Flavour Science. Recent Developments, A.J. Taylor and D.S. Mottram, eds, pp. 105-110. Cambridge, UK: The Royal Society of Chemistry. Demyttenaere, J.C.R. and H.M. Willemen, 1998. Biotransformation of linalool to furanoid and pyranoid lina-

lool oxides by Aspergillus niger. Phytochemistry, 47: 1029-1036. Dhavalikar, R.S. and P.K. Bhattacharyya, 1966. Microbial transformation of terpenes. Part VIII. Fermentation of limonene by a soil Pseudomonad. Indian J. Biochem., 3: 144-157. Dhavalikar, R.S., A. Ehbrecht, and G. Albroscheit, 1974. Microbial transformations of terpenoids: b-pinene. Dragoco Rep., 3: 47-49.

Dhavalikar, R.S., P.N. Rangachari, and P.K. Bhattacharyya, 1966. Microbial transformation of terpenes. Part

IX. Pathways of degradation of limonene in a soil Pseudomonad. Indian J. Biochem, 3: 158-164. Farooq, A., M.I. Choudhary, S. Tahara, T.-U. Rahman, K.H.C. Baser, and F. Demirci, 2002. The microbial oxidation of (—)-b-pinene by Botrytis cinerea. Z. Naturforsch., 57c: 686-690. Fenaroli, G., 1975. Synthetic flavors. In: Fenaroli's Handbook of Flavor Ingredients, eds. T.E. Furia and

N. Bellanca eds, Vol. 2, pp. 6-563. Cleveland, OH: CRC Press. Flynn, T.M. and I.A. Southwell, 1979. 1,3-Dimethyl-2-oxabicyclo [2,2,2]-octane-3-methanol and 1,3-dimethyl-2-oxabicyclo[2,2,2]-octane- 3-carboxylic acid, urinary metabolites of 1,8-cineole. Aus. J. Chem., 32: 2093-2095.

Ganapathy, K. and P.K. Bhattacharyya, unpublished data.

Gibbon, G.H., N.F. Millis, and S.J. Pirt, 1972. Degradation of a-pinene by bacteria. Proc. IVIFS, Ferment.

Technol. Today, pp. 609-612. Gibbon, G.H. and S.J. Pirt, 1971. The degradation of a-pinene by Pseudomonas PX 1. FEBS Lett., 18: 103-105. Gondai, T., M. Shimoda, and T. Hirata, 1999. Asymmetric reduction of enone compounds by Chlorella miniata.

Proc. 43rd TEAC, pp. 217-219. Griffiths, E.T., S.M. Bociek, P.C. Harries, R. Jeffcoat, D.J. Sissons, and P.W. Trudgill, 1987b. Bacterial metabolism of alpha-pinene: Pathway from alpha-pinene oxide to acyclic metabolites in Nocardia sp. strain P18.3. J. Bacteriol., 169: 4972-4979. Griffiths, E.T., P.C. Harries, R. Jeffcoat, and P.W. Trudgill, 1987a. Purification and properties of alpha-pinene oxide lyase from Nocardia sp. strain P18.3. J. Bacteriol., 169: 4980-4983. Gunsalus, I.C., P.J. Chapman, and J.-F. Kuo, 1965. Control of catabolic specificity and metabolism. Biochem.

Biophys. Res. Commun., 18: 924-931. Gyoubu, K. and M. Miyazawa, 2005. Biotransformation of (+)- and (—)-fenchone by liver microsomes. Proc. 49th TEAC, pp. 420-422.

Gyoubu, K. and M. Miyazawa, 2006. Biotransformation of (+)- and (—)-camphor by liver microsome. Proc. 50th TEAC, pp. 253-255.

Hagiwara, Y. and M. Miyazawa, 2007. Biotransformation of cineole by the larvae of common cutworm

(Spodoptera litura) as a biocatalyst. Proc. 51st TEAC, pp. 304-305. Hagiwara, Y., H. Takeuchi, and M. Miyazawa, 2006. Biotransformation of (+)-and (—)-menthone by the larvae of common cutworm (Spodoptera litura) as a biocatalyst. Proc. 50th TEAC, pp. 279-280. Hamada, H. and T. Furuya, 2000. Hydroxylation of monoterpenes by plant suspension cells. Proc. 44th TEAC, pp. 167-168.

Hamada, H., T. Furuya, and N. Nakajima, 1996. The hydroxylation and glycosylation by plant catalysts. Proc. 40th TEAC, pp. 111-112.

Hamada, H., T. Harada, and T. Furuya, 2001. Hydroxylation of monoterpenes by algae and plant suspension cells. Proc. 45th TEAC, pp. 366-368. Hamada, H., M. Kaji, T. Hirata, T. Furuya, 2003. Enantioselective biotransformation of monoterpenes by

Cyanobacterium. Proc. 47th TEAC, pp. 162-163. Hamada, H., Y. Kondo, M. Kaji, and T. Furuta, 2002. Glycosylation of monoterpenes by plant suspension cells.

Proc. 46th TEAC, pp. 321-322. Hamada, H., A. Matsumoto, and J. Takimura, 2004. Biotransformation of acyclic monoterpenes by biocatalysts of plant cultured cells and Cyanobacterium. Proc. 48th TEAC, pp. 393-395. Hamada, H. and H. Yasumune, 1995. The hydroxylation of monoterpenoids by plant cell biotransformation. Proc. 39th TEAC, pp. 375-377.

Hartline, R.A. and I.C. Gunsalus, 1971. Induction specificity and catabolite repression of the early enzymes in camphor degradation by Pseudomonas putida. J. Bacteriol., 106: 468-478.

Hashimoto Y. and M. Miyazawa, 2001. Microbial resolution of esters of racemic 2-endo-hydroxy-1,8-cineole by Glomerella cingulata. Proc. 45th TEAC, pp. 363-365.

Hayashi, T., T. Kakimoto, H. Ueda, and C. Tatsumi, 1969. Microbiological conversion of terpenes. Part VI. Conversion of borneol. J. Agric. Chem. Soc. Jpn., 43: 583-587.

Hayashi, T., H. Takashiba, S. Ogura, H. Ueda, and C. Tsutsumi, 1968. Nippon Nogei-Kagaku Kaishi, 42: 190-196.

Hayashi, T., H. Takashiba, H. Ueda, and C. Tsutsumi, 1967. Nippon Nogei Kagaku Kaishi, 41.254. no. 79878g.

Hayashi, T., S. Uedono, and C. Tatsumi, 1972. Conversion of a-terpineol to 8,9-epoxy-p-menthan-1-ol. Agric. Biol. Chem., 36: 690-691.

Hirata, T., K. Shimoda, and T. Gondai, 2000. Asymmetric hydrogenation of the C-C double bond of enones with the reductases from Nicotiana tabacum. Chem. Lett, 29: 850-851.

Hudlicky, T., D. Gonzales, and D.T. Gibson, 1999. Enzymatic dihydroxylation of aromatics in enantioselective synthesis: Expanding asymmetric methodology. Aldrichim. Acta, 32: 35-61.

Hungund, B.L., P.K. Bhattachayya, and P.N. Rangachari, 1970. Methylisopropyl ketone from a terpene fermentation by the soil Pseudomonad, PL-strain. Indian J. Biochem., 7: 80-81.

Ishida, T., Y. Asakawa, and T. Takemoto, T. Aratani, 1979. Terpenoid biotransformation in mammals. II. Biotransformation of dl-camphene. J. Pharm. Sci., 68: 928-930.

Ishida, T., Y. Asakawa, and T. Takemoto, 1981a. Metabolism of myrtenal, pellillaldehyde and dehydroabietic acid in rabbits. Res. Bull. Hiroshima Inst. Technol., 15: 79-91.

Ishida, T., Y. Asakawa, T. Takemoto, and T. Aratani, 1981b. Terpenoids biotransformation in mammals. III. Biotransformation of a-pinene, ß-pinene, pinane, 3-carene, carane, myrcene, and p-cymene in rabbits. J. Pharm. Sci., 70: 406-415.

Iscan, G., 2005. Unpublished data.

Ismaili-Alaoui, M., B. Benjulali, D. Buisson, and R. Azerad, 1992. Biotransformation of terpenic compounds by fungi I. Metabolism of R-(+)-pulegone. Tetrahedron Lett., 33: 2349-2352.

Janssens, L., H.L. De Pooter, N.M. Schamp, and E.J. Vandamme, 1992. Production of flavours by microorganisms. Process Biochem., 27: 195-215.

Joglekar, S.S. and R.S. Dhavlikar, 1969. Microbial transformation of terpenoids. I. Identification of metabolites produced by a Pseudomonad from citronellal and citral. Appl. Microbiol., 18: 1084-1087.

Kaji, M., H. Hamada, and T. Furuya, 2002. Biotransformation of monoterpenes by Cyanobacterium and plant suspension cells. Proc. 46th TEAC, pp. 323-325.

Kamino, F. and M. Miyazawa, 2005. Biotransformation of (+)-and (-)-pinane-2,3-diol using plant pathogenic fungus, Glomerella cingulata as a biocatalyst. Proc. 49th TEAC, pp. 395-396.

Kamino, F., Y. Noma, Y. Asakawa, and M. Miyazawa, 2004. Biotransformation of (1S,2S,3R,5S)-(+)-pinane-2,3-diol using plant pathogenic fungus, Glomerella cingulata as a biocatalyst. Proc. 48th TEAC, pp. 383-384.

Kayahara, H., T. Hayashi, C. and Tatsumi, 1973. Microbiological conversion of (-)-perillaldehyde and p-mentha-1,3-dien-7-al. J. Ferment. Technol., 51: 254-259.

Kieslich, K., W.-R. Abraham, and P. Washausen, 1985. Microbial transformations of terpenoids. In: Topics in flavor research, R.G. Berger, S. Nitz, and P. Schreier, eds, pp. 405-427. Marzling Hangenham: Eichborn.

Koneman, E.W., S.D. Allen, W.M. Janda, P.C. Schreckenberger, and W.C. Winn, 1997. Color Atlas and Textbook of Diagnostic Microbiology, Philadelphia: Lippincott-Raven Publishers.

Kraidman, G., B.B. Mukherjee, and I.D. Hill, 1969. Conversion of limonene into an optically active isomer of a-terpineol by a Cladosporium species. Bacteriological Proc., p. 63.

Krasnobajew, V., 1984. Terpenoids. In: Biotechnology, K. Kieslich, ed., Vol. 6a, pp. 97-125. Weinheim: Verlag Chemie.

Kumagae, S. and M. Miyazawa, 1999. Biotransformation of p-menthanes using common cutworm larvae, Spodoptera litura as a biocatalyst. Proc. 43rd TEAC, pp. 389-390.

Lassak, E.V., J.T. Pinkey, B.J. Ralph, T. Sheldon, and J.J.H. Simes, 1973. Extractives of fungi. V. Microbial transformation products of piperitone. Aust. J. Chem, 26: 845-854.

Liu, W., A. Goswami, R.P. Steffek, R.L. Chemman, F.S. Sariaslani, J.J. Steffens, and J.P.N. Rosazza, 1988. Stereochemistry of microbiological hydroxylations of 1,4-cineole. J. Org. Chem, 53: 5700-5704.

MacRae, I.C., V. Alberts, R.M. Carman, and I.M. Shaw, 1979. Products of 1,8-cineole oxidation by a Pseudomonad. Aust. J. Chem, 32: 917-922.

Madyastha, K.M. 1984. Microbial transformations of acyclic monoterpenes. Proc. Indian Acad. Sci. (Chem. Sci.), 93: 677-686.

Madyastha, K.M. and P.K. Bhattacharyya, 1968. Microbiological transformation of terpenes. Part XIII. Pathways for degradation of p-cymene in a soil pseudomonad (PL-strain). Indian J. Biochem., 5: 161-167.

Madyastha, K.M. and V. Renganathan, 1983. Bio-degradation of acetates of geraniol, nerol and citronellol by P. incognita: Isolation and identification of metabolites. Indian J. Biochem. Biophys., 20: 136-140.

Madyastha, K.M. and N.S.R. Krishna Murthy, 1988a. Regiospecific hydroxylation of acyclic monoterpene alcohols by Aspergillus niger. Tetrahedron Lett. 29: 579-580.

Madyastha, K.M. and N.S.R. Krishna Murthy, 1988b. Transformations of acetates of citronellol, geraniol, and linalool by Aspergillus niger: Regiospecific hydroxylation of citronellol by a cell-free system. Appl. Microbiol. Biotechnol., 28, 324-329.

Madyastha, K.M., P.K. Bhattacharyya, and C.S. Vaidyanathan, 1977. Metabolism of a monoterpene alcohol, linalool, by a soil pseudomonad. Can. J. Microbiol., 23: 230-239.

Mattison, J.E., L.L. McDowell, and R.H. Baum, 1971. Cometabolism of selected monoterpenoids by fungi associated with monoterpenoid-containing plants. Bacteriological Proc., p. 141.

Miyamoto, Y. and M. Miyazawa, 2001. Biotransformation of (+)- and (-)-borneol by the larvae of common cutworm (Spodoptera litura) as a biocatalyst. Proc. 45th TEAC, pp. 377-378.

Miyazato, Y. and M. Miyazawa, 1999. Biotransformation of (+)- and (-)-a-fenchyl acetated using plant parasitic fungus, Glomerella cingulata as a biocatalyst. Proc. 43rd TEAC, pp. 213-214.

Miyazawa, M., H. Furuno, K. Nankai, and H. Kameoka, 1991d. Biotransformation of verbenone by plant pathogenic microorganism, Rhizoctonia solani. Proc. 35th TEAC, pp. 274-275.

Miyazawa, M., H. Furuno, and H. Kameoka, 1992a. Biotransformation of thujone by plant pathogenic microorganism, Botrytis allii IFO 9430. Proc. 36th TEAC, pp. 197-198.

Miyazawa, M., H. Huruno, and H. Kameoka, 1991a. Biotransformation of (+)-pulegone to (-)-1R-8-hydroxy-4-p-menthen-3-one by Botrytis allii. Chem. Express, 6: 479-482.

Miyazawa, M., H. Huruno, and H. Kameoka, 1991b. Chem. Express, 6: 873.

Miyazawa, M., H. Kakita, M. Hyakumachi, K. Umemoto, and H. Kameoka, 1991e. Microbiological conversion of piperitone oxide by plant pathogenic fungi Rhizoctonia solani. Proc. 35th TEAC, pp. 276-277.

Miyazawa, M., H. Kakita, M. Hyakumachi, and H. Kameoka, 1992d. Biotransformation of monoterpenoids having p-menthan-3-one skeleton by Rhizoctonis solani. Proc. 36th TEAC, pp. 191-192.

Miyazawa, M., H. Kakita, M. Hyakumachi, K. Umemoto, and H. Kameoka, 1992e. Microbiological conversion of monoterpenoids containing p-menthan-3-one skeleton by plant pathogenic fungi Rhizoctonia solani. Proc. 36th TEAC, pp. 193-194.

Miyazawa, M., S. Kumagae, H. Kameoka, 1997a. Biotransformation of (-)-menthol and (+)-menthol by common cutworm Larvae, Spodoptera litura as a biocatalyst. Proc. 41st TEAC, pp. 391-392.

Miyazawa, M., S. Kumagae, H. Kameoka, 1997b. Biotransformation of (+)-trans-myrtanol and (-)-trans-myrta-nol by common cutworm Larvae, Spodoptera litura as a biocatalyst. Proc. 41st TEAC, pp. 389-390.

Miyazawa, M. and Y. Miyamoto, 2004. Biotransformation of (+)-(1R, 2S)-fenchol by the larvae of common cutworm (Spodoptera litura). Tetrahadron, 60: 3091-3096.

Miyazawa, M., T. Murata, and H. Kameoka, 1998. Biotransformation of ß-myrcene by common cutworm larvae, Spodoptera litura as a biocatalyst. Proc. 42nd TEAC, pp. 123-125.

Miyazawa, M., H. Nankai, and H. Kameoka, 1996a. Microbial oxidation of citronellol by Glomerella cingulata. Nat. Prod. Lett., 8: 303-305.

Miyazawa, M., Y. Noma, K. Yamamoto, and H. Kameoka, 1983. Microbiological conversion of d- and l-limonene, Proc. 27th TEAC, pp. 147-149.

Miyazawa, M., Y. Noma, K. Yamamoto, and H. Kameoka, 1991c. Biotransformation of 1,4-cineole to 2-endo-hydroxy-1,4-cineole by Aspergillus niger. Chem. Express, 6: 771-774.

Miyazawa, M., Y. Noma, K. Yamamoto, and H. Kameoka, 1992b. Biohydroxylation of 1,4-cineole to 9-hy-droxy-1,4-cineole by Aspergillus niger. Chem. Express, 7: 305-308.

Miyazawa, M., Y. Noma, K. Yamamoto, and H. Kameoka, 1992c. Biotransformation of 1,4-cineole to 3-endo-hydroxy-1,4-cineole by Aspergillus niger. Chem. Express, 7: 125-128.

Miyazawa, M., Y. Suzuki, and H. Kameoka, 1994b. Biotransformation of myrtanol by plant pathogenic microorganism, Glomerella cingulata, Proc. 38th TEAC, pp. 96-97.

Miyazawa, M., Y. Suzuki, and H. Kameoka, 1997c. Biotransformation of (-)- and (+)-isopinocamphenol by three fungi. Phytochemistry, 45: 945-950.

Miyazawa, M., T. Wada, and H. Kameoka, 1995a. Biotransformation of terpinene, limonene and a-phelland-rene in common cutworm larvae, Spodoptera litura Fabricius, Proc. 39th TEAC, pp. 362-363.

Miyazawa, M., T. Wada, and H. Kameoka, 1996b. Biotransformation of p-menthanes using common cutworm larvae, Spodoptera litura as a biocatalyst. Proc. 40th TEAC, pp. 80-81.

Miyazawa, M., K. Yamamoto, Y. Noma, and H. Kameoka, 1990a. Bioconversion of (+)-fenchone to (+)-6-endo-hydroxyfenchone by Aspergillus niger. Chem. Express, 5: 237-240.

Miyazawa, M., K. Yamamoto, Y. Noma, and H. Kameoka, 1990b. Bioconversion of (+)-fenchone to 5-endo-hydroxyfenchone by Aspergillus niger. Chem. Express, 5: 407-410.

Miyazawa, M., H. Yanahara, and H. Kameoka, 1995c. Biotransformation of trans-pinocarveol by plant pathogenic microorganism, Glomerella cingulata, and by the larvae of common cutworm, Spodoptera litura Fabricius. Proc. 39th TEAC, pp. 360-361.

Miyazawa, M., H. Yanagihara, and H. Kameoka, 1996c. Biotransformation of pinanes by common cutworm larvae, Spodoptera litura as a biocatalyst. Proc. 40th TEAC, pp. 84-85.

Miyazawa, M., K. Yokote, and H. Kameoka, 1994a. Biotransformation of linalool oxide by plant pathogenic microorganisms, Glomerella cingulata. Proc. 38th TEAC, pp. 101-102.

Miyazawa, M., K. Yokote, and H. Kameoka, 1995b. Biotransformation of 2-endo-hydroxy-1,4-cineole by plant pathogenic microorganism, Glomerella cingulata. Proc. 39th TEAC, pp. 352-353.

Mizutani, S., T. Hayashi, H. Ueda, and C. Tstsumom, 1971. Microbiological conversion of terpenes. Part IX. Conversion of linalool. Nippon Nogei Kagaku Kaishi, 45: 368-373.

Moroe, T., S. Hattori, A. Komatsu, and Y. Yamaguchi, 1971. Japanese Patent, 2.036. 875. no. 98195t.

Mukherjee, B.B., G. Kraidman, and I.D. Hill, 1973. Synthesis of glycols by microbial transformation of some monocyclic terpenes. Appl. Microbiol., 25: 447-453.

Mukherjee, B.B., G. Kraidman, I.D. Hill, 1974. Transformation of 1-menthene by a Cladosporium: Accumulation of b-isopropyl glutaric acid in the growth medium. Appl. Microbiol., 27: 1070-1074.

Murakami, T., I. Ichimoto, and C. Tstsumom, 1973. Microbiological conversion of linalool. Nippon Nogei Kagaku Kaishi, 47: 699-703.

Murata, T. and M. Miyazawa, 1999. Biotransformation of dihydromyrcenol by common cutworm larvae, Spodoptera litura as a biocatalyst. Proc. 43rd TEAC, pp. 393-394.

Nakanishi, K. and M. Miyazawa, 2004. Biotransformation of (-)-menthone by human liver microsomes. Proc. 48th TEAC, pp. 401-402.

Nakanishi, K. and M. Miyazawa, 2005. Biotransformation of (+)- and (-)- menthol by liver microsomal humans and rats. Proc. 49th TEAC, pp. 423-425.

Nishimura, H., S. Hiramoto, and J. Mizutani, 1983a. Biological activity of bottrospicatol and related compounds produced by microbial transformation of (-)-cis-carveol towards plants. Proc. 27th TEAC, pp. 107-109.

Nishimura, H., S. Hiramoto, J. Mizutani, Y. Noma, A. Furusaki, and T. Matsumoto, 1983b. Structure and biological activity of bottrospicatol, a novel monoterpene produced by microbial transformation of (-)-cis-carveol. Agric. Biol. Chem, 47: 2697-2699.

Nishimura, H. and Y. Noma, 1996. Microbial transformation of monoterpenes: flavor and biological activity. In: Biotechnology for Improved Foods and Flavors, G.R. Takeoka, R. Teranishi, P.J. Williams, and A. Kobayashi, A., ACS Symp. Ser. 637, pp.173-187. American Chemical Society, Washington, DC.

Nishimura, H., Y. Noma, and J. Mizutani, 1982. Eucalyptus as biomass. Novel compounds from microbial conversion of 1,8-cineole. Agric. Biol. Chem., 46: 2601-2604.

Nishimura, H., D.M. Paton, and M. Calvin, 1980. Eucalyptus radiata oil as a renewable biomass. Agric. Biol. Chem, 44: 2495-2496.

Noma, Y., 1976. Microbiological conversion of carvone. Biochemical reduction of terpenes, part VI. Ann. Res. Stud. Osaka Joshigakuen Junior College, 20: 33-47.

Noma, Y., 1977. Conversion of the analogues of carvone and dihydrocarvone by Pseudomonas ovalis, strain 6-1, Biochemical reduction of terpenes, part VII. Nippon Nogeikagaku Kaishi, 51: 463-470.

Noma, Y., 1979a. Conversion of (-)-carvone by Nocardia lurida A-0141 and Streptosporangium roseum IFO3776. Biochemical reduction of terpenes, part VIII. Nippon Nogeikagaku Kaishi, 53: 35-39.

Noma, Y., 1979b. On the pattern of reaction mechanism of (+)-carvone conversion by actinomycetes. Biochemical reduction of terpenes, part X, Ann. Res. Stud. Osaka Joshigakuen Junior College, 23: 27-31.

Noma, Y., 1980. Conversion of (-)-carvone by strains of Streptomyces, A-5-1 and Nocaradia, 1-3-11. Agric. Biol. Chem, 44: 807-812.

Noma, Y., 1984. Microbiological conversion of carvone, Kagaku to Seibutsu, 22: 742-746.

Noma, Y., 1988. Formation of p-menthane-2,8-diols from (-)-dihydrocarveol and (+)-dihydrocarveol by Aspergillus spp., The Meeting of Kansai Division of The Agricultural and Chemical Society of Japan, Kagawa, p. 28.

Noma, Y., 2000. unpublished data.

Noma, Y., 2007. Microbial production of mosquitocidal (1R,2S,4R)-(+)-menthane- 2,8-diol. In: Aromatic Plants from Asia their Chemistry and Application in Food and Therapy, L. Jiarovetz, N.X. Dung, and V.K. Varshney, pp. 169-186. Dehradun: Har Krishan Bhalla & Sons.

Noma, Y., and Y. Asakawa, 1992. Enantio- and diastereoselectivity in the biotransformation of carveols by Euglena gracilis Z. Phytochem., 31: 2009-2011.

Noma, Y. and Y. Asakawa, 1995. Aspergillus spp.: Biotransformation of Terpenoids and Related Compounds. In: Biotechnology in Agriculture and Forestry, Vol. 33. Medicinal and Aromatic Plants VIII, Y.P.S. Bajaj, ed., pp. 62-96. Berlin: Springer.

Noma, Y. and Y. Asakawa, 1998. Euglena gracilis Z: Biotransformation of terpenoids and related compounds. In: Biotechnology in Agriculture and Forestry, Vol. 41. Medicinal and Aromatic Plants X, Y.P.S. Bajaj, ed., pp. 194-237. Berlin Heidelberg: Springer.

Noma, Y. and Y. Asakawa, 2005a. New metabolic pathways of ß-pinene and related compounds by Aspergillus niger. Book of Abstracts of the 36th ISEO, p. 32.

Noma, Y. and Y. Asakawa, 2005b. Microbial transformation of (-)-myrtenol and (-)-nopol. Proc. 49th TEAC, pp. 78-80.

Noma, Y. and Y. Asakawa, 2006a. Biotransformation of (+)-limonene and related compounds by Citrus pathogenic fungi. Proc. 50th TEAC, pp. 431-433.

Noma, Y. and Y. Asakawa, 2006b. Biotransformation of ß-pinene, myrtenol, nopol and nopol benzyl ether by Aspergillus niger TBUYN-2. Book of Abstracts of the 37th ISEO, p. 144.

Noma, Y. and Y. Asakawa, 2006c. Microbial transformation of (-)-nopol benzyl ether. Proc. 50th TEAC, pp. 434-436.

Noma, Y. and Y. Asakawa, 2007a. Biotransformation of limonene and related compounds by newly isolated low temperature grown citrus pathogenic fungi and red yeast. Book of Abstracts of the 38th ISEO, p. 7.

Noma, Y. and Y. Asakawa, 2007b. Microbial transformation of limonene and related compounds. Proc. 51st TEAC, pp. 299-301.

Noma, Y. and Y. Asakawa, 2008. New metabolic pathways of (+)-carvone by Citrus pathogenic Aspergillus niger Tiegh CBAYN and A. niger TBUYN-2, Proc. 52nd TEAC, pp. 206-208.

Noma, Y. and M. Iwami, 1994. Separation and identification of terpene convertible actinomycetes: S. bottro-pensis SY-2-1, S. ikutamanensis Ya-2-1 and S. humidus Tu-1. Bull. Tokushima Bunri Univ., 47: 99-110.

Noma, Y., M. Miyazawa, K. Yamamoto, H. Kameoka, T. Inagaki, and H. Sakai, 1984. Microbiological conversion of perillaldehyde. Biotransformation of l- and dl-perillaldehyde by Streptomyces ikutamanensis, Ya-2-1, Proc. 28th TEAC, pp. 174-176.

Noma, Y., H. Nishimura, and C. Tatsumi, 1980. Biotransformation of carveol by Actinomycetes. 1. Biotransformation of (-)-cis-carveol and (-)-trans-carveol by Streptomyces bottropensis, SY-2-1, Proc. 24th TEAC, pp. 67-70.

Noma, Y. and H. Nishimura, 1980. Microbiological transformation of 1,8-cineole. Oxidative products from 1,8-cineole by S. bottropensis, SY-2-1. Annual Meeting of Agricultural and Biological Chemical Society, Book of abstracts, p. 28.

Noma, Y. and H. Nishimura, 1981. Microbiological transformation of 1,8-cineole. Production of 3ß-hydroxy-1,8-cineole from 1,8-cineole by S. ikutamanensis, Ya-2-1. Annual Meeting of Agricultural and Biological Chemical Society, Book of abstracts, p. 196.

Noma, Y. and H. Nishimura, 1982. Biotransformation of carvone. 4. Biotransformation of (+)-carvone by Streptomyces bottropensis, SY-2-1. Proc. 26th TEAC, pp. 156-159.

Noma, Y. and H. Nishimura, 1983a. Biotransformation of (-)-carvone and (+)-carvone by S. ikutamanensis Ya-2-1. Annual Meeting of Agricultural and Biological Chemical Society, Book of abstracts, p. 390.

Noma, Y. and H. Nishimura, 1983b. Biotransformation of carvone. 5. Microbiological transformation of dihy-drocarvones and dihydrocarveols, Proc. 27th TEAC, pp. 302-305.

Noma, Y. and H. Nishimura, 1984. Microbiological conversion of carveol. Biotransformation of (-)-cis-carveol and (+)-cis-carveol by S. bottropensis, Sy-2-1. Proc. 28th TEAC, pp. 171-173.

Noma, Y. and H. Nishimura, 1987. Bottrospicatols, novel monoterpenes produced on conversion of (-)- and (+)-cis-carveol by Streptomyces. Agric. Biol. Chem., 51: 1845-1849.

Noma, Y., H. Nishimura, S. Hiramoto, M. Iwami, and C. Tstsumi, 1982. A new comound, (4R, 6R)-(+)-6,8-oxidomenth-1-en-9-ol produced by microbial conversion of (-)-cis-carveol. Agric. Biol. Chem, 46: 2871-2872.

Noma, Y., S. Nonomura, and H. Sakai, 1974a. Conversion of (-)-carvotanacetone and (+)-carvotanacetone by Pseudomonas ovalis, strain 6-1, Agric. Biol. Chem, 38: 1637-1642.

Noma, Y., S. Nonomura, H. Ueda, and C. Tatsumi, 1974b. Conversion of (+)-carvone by Pseudomonas ovalis, strain 6-1(1). Agric. Biol. Chem., 38: 735-740.

Noma, Y., S. Nonomura, H. Ueda, H. Sakai, and C. Tstusmi, 1974c. Microbial transformation of carvone. Proc. 18th TEAC, pp. 20-23.

Noma, Y., S. Nonomura, and H. Sakai, 1975. Epimerization of (-)-isodihydrocarvone to (-)-dihydrocarvone by Pseudomonas fragi IFO 3458. Agric. Biol. Chem., 39: 437-441.

Noma, Y. and S. Nonomura, 1974. Conversion of (-)-carvone and (+)-carvone by a strain of Aspergillus niger. Agric. Biol. Chem., 38: 741-744.

Noma, Y. and H. Sakai, 1984. Investigation of the conversion of (-)-perillyl alcohol, 1,8-cineole, (+)-carvone and (-)-carvone by rare actinomycetes. Ann. Res. Stud. Osaka Joshigakuen Junior College, 28: 7-18.

Noma, Y. and C. Tatsumi, 1973. Conversion of (-)-carvone by Pseudomonas ovalis, strain 6-1(1), Microbial conversion of terpenes part XIII. Nippon Nogeikagaku Kaishi, 47: 705-711.

Noma, Y., M. Toyota, and Y. Asakawa, 1985a. Biotransformation of (-)-carvone and (+)-carvone by Aspergillus spp. Annual Meeting of Agricultural and Biological Chemistry, Sapporo, p. 68.

Noma, Y., M. Toyota, and Y. Asakawa, 1985b. Biotransformation of carvone. 6. Biotransformation of (-)-car-vone and (+)-carvone by a strain of Aspergillus niger. Proc. 29th TEAC, pp. 235-237.

Noma, Y., M. Toyota, Y. and Asakawa, 1985c. Microbiological conversion of (-)-carvotanacetone and (+)-car-votanacetone by S. bottropensis SY-2-1. Proc. 29th TEAC, pp. 238-240.

Noma, Y., M. Toyota, and Y. Asakawa, 1986. Reduction of terpene aldehydes and epoxidation of terpene alcohols by S. ikutamanensis, Ya-2-1. Proc. 30th TEAC, pp. 204-206.

Noma, Y., M. Toyota, and Y. Asakawa, 1988a. Microbial transformation of thymol formation of 2-hydroxy-3-p-menthen-5-one by Streptomyces humidus, Tu-1. Proc. 28th TEAC, pp. 177-179.

Noma, Y., H. Takahashi, M. Toyota, and Y. Asakawa, 1988b. Microbiological conversion of (-)-carvotanace-tone and (+)-carvotanacetone by a strain of Aspergillus niger. Proc. 32nd TEAC, pp. 146-148.

Noma, Y., H. Takahashi, and Y. Asakawa, 1989. Microbiological conversion of menthol. Biotransformation of (+)-menthol by a strain of Aspergillus niger. Proc. 33rd TEAC, pp. 124-126.

Noma, Y., H. Takahashi, and Y. Asakawa, 1990. Microbiological conversion of p-menthane 1. Formation of p-menthane-1,9-diol from p-menthane by a strain of Aspergillus niger. Proc. 34th TEAC, pp. 253-255.

Noma, Y., H. Takahashi, and Y. Asakawa, 1991a. Biotransformation of terpene aldehyde by Euglena gracilis Z. Phytochem., 30: 1147-1151.

Noma, Y., N. Miki, E. Akehi, E. Manabe, and Y. Asakawa, 1991b. Biotransformation of monoterpenes by pho-tosynthetic marine algae, Dunaliella tertiolecta, Proc. 35th TEAC, pp. 112-114.

Noma, Y., E. Akehi, N. Miki, and Y. Asakawa, 1992a. Biotransformation of terpene aldehyde, aromatic aldehydes and related compounds by Dunaliella tertiolecta. Phytochemistry, 31: 515-517.

Noma, Y., S. Yamasaki, and Asakawa Y. 1992b. Biotransformation of limonene and related compounds by Aspergillus cellulosae. Phytochemistry, 31: 2725-2727.

Noma, Y., H. Takahashi, T. Hashimoto, and Y. Asakawa, 1992c. Biotransforamation of isopiperitenone, 6-gin-gerol, 6-shogaol and neomenthol by a strain of Aspergillus niger. Proc. 37th TEAC, pp. 26-28.

Noma, Y., A. Sogo, S. Miki, N. Fujii, T. Hashimoto, and Y. Asakwawa, 1992d. Biotransformation of terpenoids and related compounds. Proc. 36th TEAC, pp. 199-201.

Noma, Y., H. Takahashi, and Y. Asakawa, 1993. Formation of 8 kinds of p-menthane-2,8-diols from carvone and related compounds by Euglena gracilis Z. Biotransformation of monoterpenes by photosynthetic microorganisms. Part VIII. Proc. 37th TEAC, pp. 23-25.

Noma, Y., T. Higata, T. Hirata, Y. Tanaka, T. Hashimoto, and Y. Asakawa, 1995. Biotransformation of [6-2H]-(-)-carvone by Aspergillus niger, Euglena gracilis Z and Dunaliella tertiolecta, Proc. 39th TEAC, pp. 367-368.

Noma, Y., K. Hirata, and Y. Asakawa, 1996. Biotransformation of 1,8-cineole. Why do the biotransformed 2a-and 3a-hydroxy-1,8-cineole by Aspergillus niger have no optical activity? Proc. 40th TEAC, pp. 89-91.

Noma, Y., K. Matsueda, I. Maruyama, and Y. Asakawa, 1997. Biotransformation of terpenoids and related compounds by Chlorella species. Proc. 41st TEAC, pp. 227-229.

Noma, Y., J. Watanabe, T. Hashimoto, and Y. Asakawa, 2001. Microbiological transformation of ß-pinene. Proc. 45th TEAC, pp. 88-90.

Noma, Y., M. Furusawa, T. Hashimoto, and Y. Asakawa, 2002. Stereoselective formation of (1R, 2S, 4R)-(+)-p-menthane-2,8-diol from a-pinene. Book of Abstracts of the 33rd ISEO, p. 142.

Noma, Y., F. Kamino, T. Hashimoto, and Y. Asakawa, 2003. Biotransformation of (+)- and (-)-pinane-2,3-diol and related compounds by Aspergillus niger. Proc. 47th TEAC, pp. 91-93.

Noma, Y., M. Furusawa, T. Hashimoto, and Y. Asakawa, 2004. Biotransformation of (+)- and (-)-3-pinanone by Aspergillus niger. Proc. 48th TEAC, pp. 390-392.

Noma, Y., T. Hashimoto, S. Uehara, and Y. Asakawa, 2009. unpublished data.

Nonoyama, H., H. Matsui, M. Hyakumachi, and M. Miyazawa, 1999. Biotransformation of (-)-menthone using plant parasitic fungi, Rhizoctonia solani as a biocatalyst. Proc. 43rd TEAC, pp. 387-388.

Ohsawa, M. and Miyazawa, M. 2001. Biotransformation of (+)- and (-)-isopulegol by the larvae of common cutworm (Spodoptera litura) as a biocatalyst. Proc. 45th TEAC, pp. 375-376.

Omata, T. Iwam N. oto, T. Kimura, A. Tanaka, S. Fukui, 1981. Stereoselective hydrolysis of dl-menthyl succinate by gel-entrapped Rhodotorula minuta var. texensis cells in organic solvent. Appl. Microbiol. Biotechnol., 11: 119-204.

Oosterhaven, K., K.J. Hartmans, and J.J.C. Scheffer, 1995a. Inhibition of potato sprouts growth by carvone enantiomers and their bioconversion in sprouts. Potato Res., 38: 219-230.

Oosterhaven, K., B. Poolman, and E.J. Smid, 1995b. S-Carvone as a natural potato sprouts inhibiting, fungistatic and bacteriostatic compound. Ind. Crops Prod., 4: 23-31.

Oritani, T. and K. Yamashita, 1973a. Microbial dl-acyclic alcohols, Agric. Biol. Chem., 37: 1923-1928.

Oritani, T. and Yamashita, K. 1973b. Microbial resolution of racemic 2- and 3-alkylcyclohexanols. Agric. Biol. Chem, 37: 1695-1700.

Oritani, T. and K. Yamashita, 1973c. Microbial resolution of dl-isopulegol. Agric. Biol. Chem, 37: 1687-1689.

Oritani, T. and K. Yamashita, 1973d. Microbial resolution of racemic carvomenthols. Agric. Biol. Chem., 37: 1691-1694.

Oritani, T. and K. Yamashita, 1974. Microbial resolution of (±)-borneols. Agric. Biol. Chem., 38: 1961-1964.

Oritani, T. and Yamashita, K. 1980. Optical resolution of dl-ß, g-unsaturated terpene alcohols by biocatalyst of microorganism. Proc. 24th TEAC, pp. 166-169.

Pfrunder, B. and Ch. Tamm, 1969a. Mikrobiologische Umwandlung von bicyclischen monoterpenen durch Absidia orchidis (Vuill.) Hagem. 2. Teil: Hydroxylierung von Fenchon und Isofenchon. Helv. Chim. Acta., 52: 1643-1654.

Pfrunder, B. and Ch. Tamm, 1969b. Mikrobiologische Umwandlung von bicyclischen monoterpenen durch Absidia orchidis (Vuill.) Hagem. 1. Teil: Reduktion von Campherchinon und Isofenchonchinon. Helv. Chim. Acta., 52: 1630-1642.

Prema, B.R. and P.K. Bhattachayya, 1962. Microbiological transformation of terpenes. II. Transformation of a-pinene. Appl. Microbiol., 10: 524-528.

Rama Devi, J. and P.K. Bhattacharyya, 1977a. Microbiological transformations of terpenes. Part XXIV. Pathways of degradation of linalool, geraniol, nerol and limonene by Pseudomonas incognita, linalool strain. Indian J. Biochem. Biophys., 14: 359-363.

Rama Devi, J. and P.K. Bhattacharyya, 1977b. Microbiological transformation of terpenes. Part XXIII. Fermentation of geraniol, nerol and limonene by soil Pseudomonad, Pseudomonas incognita (linalool strain). Indian J. Biochem. Biophys., 14: 288-291.

Rama Devi, J., S.G. Bhat, and P.K. Bhattacharyya, 1977. Microbiological transformations of terpenes. Part XXV. Enzymes involved in the degradation of linalool in the Pseudomonas incognita, linalool strain. Indian J. Biochem. Biophys., 15: 323-327.

Rama Devi, J. and P.K. Bhattacharyya, 1978. Molecular rearrangements in the microbiological transformations of terpenes and the chemical logic of microbial processes. J. Indian Chem. Soc., 55: 1131-1137.

Rapp. A. and H. Mandery, 1988. Influence of Botrytis cinerea on the monoterpene fraction wine aroma. In: Bioflavour'87. Analysis - Biochemistry - Biotechnology, ed. Schreier P., Walter de Gruyter and Co., Berlin, pp. 445-452.

Saeki M. and N. Hashimoto, 1968. Microbial transformation of terpene hydrocarbons. Part I. Oxidation products of d-limonene and d-pentene. Proc. 12th TEAC, pp. 102-104.

Saeki, M. and N. Hashimoto, 1971. Microorganism biotransformation of terpenoids. Part II. Production of cis-terpin hydrate and terpineol from d-limonene. Proc. 15th TEAC, pp. 54-56.

Saito, H. and M. Miyazawa, 2006. Biotransformation of 1,8-cineole by Salmonella typhimurium OY1001/3A4. Proc. 50th TEAC, pp. 275-276.

Savithiry, N., T.K. Cheong, and P. Oriel, 1997. Production of alpha-terpineol from Escherichia coli cells expressing thermostable limonene hydratase. Appl. Biochem. Biotechnol., 63-65: 213-220.

Sawamura, Y., S. Shima, H. Sakai, and C. Tatsumi, 1974. Microbiological conversion of menthone. Proc. 18th TEAC, pp. 27-29.

Schwammle, B., E. Winkelhausen, S. Kuzmanova, and W. Steiner, 2001. Isolation of carvacrol assimilating microorganisms. Food Technol. Biotechnol., 39: 341-345.

Seubert, W. and E. Fass, 1964a. Studies on the bacterial degradation of isoprenoids. V. The mechanism of iso-prenoid degradation. Biochem. Z., 341: 35-44.

Seubert, W. and E. Fass, 1964b. Studies on the bacterial degradation of isoprenoids. IV. The purification and properties of beta-isohexenylglutaconyl-COA-hydratase and beta-hydroxy-beta-isohexenylglutaryl-COA-lyase. Biochem. Z, 341: 23-34.

Seubert, W. and U. Remberger, 1963. Studies on the bacterial degradation of isoprenoid compounds. II. The role of carbon dioxide. Biochem. Z., 338: 245-246.

Seubert, W., E. Fass, and U. Remberger, 1963. Studies on the bacterial degradation of isoprenoid compounds. III. Purification and properties of geranyl carboxylase. Biochem. Z., 338: 265-275.

Shima, S., Y. Yoshida, Y. Sawamura, and C. Tstsumi, 1972. Microbiological conversion of perillyl alcohol. Proc. 16th TEAC, pp. 82-84.

Shimoda, K., D.I. Ito, S. Izumi, and T. Hirata, 1996. Novel reductase participation in the syn-addition of hydrogen to the C=C bond of enones in the cultured cells of Nicotiana tabacum. J. Chem. Soc., Perkin Trans. 1, 355-358.

Shimoda, K., T. Hirata, and Y. Noma, 1998. Stereochemistry in the reduction of enones by the reductase from Euglena gracilis. Z. Phytochem., 49: 49-53.

Shimoda, K., S. Izumi, and T. Hirata, 2002. A novel reductase participating in the hydrogenation of an exocy-clic C-C double bond of enones from Nicotiana tabacum. Bull. Chem. Soc. Jpn., 75: 813-816.

Shimoda, K., N. Kubota, H. Hamada, and M. Kaji, 2003. Cyanobacterium catalyzed asymmetric reduction of enones. Proc. 47th TEAC, pp. 164-166.

Shindo, M., T. Shimada, and M. Miyazawa, 2000. Metabolism of 1,8-cineole by cytochrome P450 enzymes in human and rat liver microsomes. Proc. 44th TEAC, pp. 141-143.

Shukla, O.P., and P.K. Bhattacharyya, 1968. Microbiological transformations of terpenes: Part XI—Pathways of degradation of a- & ß-pinenes in a soil Pseudomonad (PL-strain). Indian J. Biochem., 5: 92-101.

Shukla, O.P., M.N. Moholay, and P.K. Bhattacharyya, 1968. Microbiological transformation of terpenes: Part X—Fermantation of a- & ß-pinenes by a soil Pseudomonad (PL-strain). Indian J. Biochem., 5: 79-91.

Shukla, O.P., R.C. Bartholomeus, and I.C. Gunsalus, 1987. Microbial transformation of menthol and menthane-3,4-diol. Can. J. Microbiol., 33: 489-497.

Southwell, I.A. and T.M. Flynn, 1980. Metabolism of a- and ß-pinene, p-cymemene and 1,8-cineole in the brush tail possum. Xenobiotica, 10: 17-23.

Suga, T. and T. Hirata, 1990. Biotransformation of exogenous substrates by plant cell cultures. Phytochemistry, 29: 2393-2406.

Suga, T., T. Hirata, and H. Hamada, 1986. The stereochemistry of the reduction of carbon-carbon double bond with the cultured cells of Nicotiana tabacum. Bull. Chem. Soc. Jpn, 59: 2865-2867.

Sugie, A. and M. Miyazawa, 2003. Biotransformation of (-)-a-pinene by human liver microsomes. Proc. 47th TEAC, pp. 159-161.

Swamy, G.K., K.L. Khanchandani, and P.K. Bhattacharyya, 1965. Symposium on recent advances in the chemistry of terpenoids, Natural Institute of Sciences of India, New Dehli, p. 10.

Takagi, K., Y. Mikami, Y. Minato, I. Yajima, and K. Hayashi, 1972. Manufacturing metho of carvone by microorganisms, Japanese Patent 72-38998.

Takahashi, H., Y. Noma, M. Toyota, and Y. Asakawa, 1994. The biotransformation of (-)- and (+)-neomenthols and isomenthols by Aspergillus niger. Phytochemistry, 35: 1465-1467.

Takeuchi, H. and M. Miyazawa, 2004. Biotransformation of nerol by the larvae of common cutworm (Spodoptera litura) as a biocatalyst. Proc. 48th TEAC, pp. 399-400.

Takeuchi, H. and M. Miyazawa, 2005. Biotransformation of (-)- and (+)-citronellene by the larvae of common cutworm (Spodoptera litura) as biocatalyst. Proc. 49th TEAC, pp. 426-427.

Trudgill, P.W., 1990. Microbial metabolism of terpenes—recent developments. Biodegradation 1: 93-105.

Tsukamoto, Y., S. Nonomura, H. Sakai, and C. Tatsumi, 1974. Microbiological oxidation of p-menthane 1. Formation of formation of p-cis-menthan-1-ol. Proc. 18th TEAC, pp. 24-26.

Tsukamoto, Y., S. Nonomura, and H. Sakai, 1975. Formation of p-cis-menthan-1-ol from p-menthane by Pseudomonas mendociana SF. Agric. Biol. Chem., 39: 617-620.

Van der Werf, M.J., J.A.M. de Bont, and D.J. Leak, 1997. Opportunities in microbial biotransformation of monoterpenes. Adv. Biochem. Eng./Biotechnol., 55: 147-177.

Van der Werf, M.J. and J.A.M. de Bont, 1998a. Screening for microorganisms converting limonene into carvone. In: New frontiers in screening for microbial biocatalysts, Proc. Int. Symp., Ede, The Netherlands, K. Kieslich, C.P. Beek, J.A.M. van der Bont, and W.J.J. van den Tweel, eds, Vol. 53, pp. 231-234. Studies in Organic Chemistry.

Van der Werf, M.J., K.M. Overkamp, and J.A.M. de Bont, 1998b. Limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis DCL14 belongs to a novel class of epoxide hydrolases. J. Bacteriol., 180: 5052-5057.

van Dyk, M.S., E. van Rensburg, I.P.B. Rensburg, and N. Moleleki, 1998. Biotransformation of monoterpenoid ketones by yeasts and yeast-like fungi, J. Mol. Catal. B: Enzym., 5: 149-154.

Verstegen-Haaksma, A.A., H.J. Swarts, B.J.M. Jansen, A. de Groot, N. Bottema-MacGillavry, and B. Witholt, 1995. Application of S-(+)-carvone in the synthesis of biologically active natural products using chemical transformations and bioconversions. Ind. Crops Prod., 4: 15-21.

Watanabe, T., H. Nomura, T. Iwasaki, A. Matsushima, and T. Hirata, 2007. Cloning of pulegone reductase and reduction of enones with the recombinant reductase. Proc. 51st TEAC, pp. 323-325.

Watanabe, Y. and T. Inagaki, 1977a. Japanese Patent 77.12.989. No. 187696x.

Watanabe, Y. and T. Inagaki, 1977b. Japanese Patent 77.122.690. No. 87656g.

Wolf-Rainer, A., 1994. Phylogeny and biotransformation. Part 5. Biotransformation of isopinocampheol. Z. Naturforsch., 49c: 553-560.

Yamada, K., S. Horiguchi, and J. Tatahashi, 1965. Studies on the utilization of hydrocarbons by microorganisms. Part VI. Screening of aromatic hydrocarbon-assimilating microorganisms and cumic acid formation fromp-cymene. Agric. Biol. Chem., 29: 943-948.

Yamaguchi, Y., A. Komatsu, and T. Moroe, 1977. Asymmetric hydrolysis of dl-menthyl acetate by Rhodotorula mucilaginosa. J. Agric. Chem. Soc. Jpn., 51: 411-416.

Yamamoto, K., M. Miyazawa, H. Kameoka, and Y. Noma, 1984. Biotransformation of d- and l-fenchone by a strain of Aspergillus niger. Proc. 28th TEAC, pp. 168-170.

Yamanaka, T. and M. Miyazawa, 1999. Biotransformation of (-)-trans-verbenol by common cutworm larvae, Spodoptera litura as a biocatalyst. Proc. 43rd TEAC, pp. 391-392.

Yawata, T., M, Ogura, K. Shimoda, S. Izumi, and T. Hirata, 1998. Epoxidation of monoterpenes by the peroxidase from the cultured cells of Nicotiana tabacum, Proc. 42nd TEAC, pp. 142-144.

Yonemoto, N., S. Sakamoto, T. Furuya, and H. Hamada, 2005. Preparation of (-)-perillyl alcohol oligosaccharides. Proc. 49th TEAC, pp. 108-110.

15 Biotransformation of

Sesquiterpenoids, Ionones, Damascones, Adamantanes, and Aromatic Compounds by Green Algae, Fungi, and Mammals

Was this article helpful?

0 0
Aromatherapy Natural Scents that Help and Heal

Aromatherapy Natural Scents that Help and Heal

You have probably heard the term Aromatherapy and wondered what exactly that funny word, „aromatherapy‟ actually means. It is the use of plant oils in there most essential form to promote both mental and physical well being. The use of the word aroma implies the process of inhaling the scents from these oils into your lungs for therapeutic benefit.

Get My Free Ebook


Post a comment