Achieving Soft Tissue Closure in Immediate Implant Therapy

Complete soft tissue closure on top of dental implants might present a prerequisite for the overall success of dental implant therapy (Lekholm et al. 1993). Submerging dental implants was originally performed to protect the bone-grafting material from the hostile oral environment and to prevent the migration of epithelial tissues along the socket walls. As a consequence, primary soft tissue closure in immediate implant procedures became a standard clinical routine by many authors (Gelb 1993, Becker and Becker 1990, Rosenquist and Grenthe 1996, Gotfredsen et al. 1993). As a result, many techniques have been introduced to achieve complete soft tissue closure with a variable clinical outcome, either by undermining and releasing the soft tissue margins to approximate the wound edges or by applying a special surgical procedure to achieve the same goal (Gher et al. 1994a, Becker et al. 1998, Artzi and Nemcovsky 1997, Gher et al. 1994b, Edel 1995, Evian and Cutler 1994).

Early exposure of immediately placed implants in fresh sockets was a common event until these new techniques offered predictable soft tissue closure results. This early exposure of dental implants might have a negative impact on osseous regenerative procedures and jeopardize implant survival rates (Becker et al. 1994, Lekholm et al. 1993, Mellonig and Nevins 1995, Simion et al. 1994, Jovanovic et al. 1992). Complete socket closure in immediate implant placement is a technique-sensitive procedure that warrants special attention. It influences the width, position, and configuration of the attached mucosa as well as the future emergence profile (Rosenquist 1997). The most common methods of achieving primary soft tissue closure in immediate implant placement are Rehrmanplasty, palatal rotated flap, buccal rotated flap, pedicle island flap, and the use of GTR barriers.

Rehrmanplasty

Rehrmanplasty is the most common method preferred by clinicians for primary soft tissue closure in the oral cavity. It was originally developed to close oroantral fistulae (Von Rehrman 1936, Kay 1970), as shown in Figures 6.3A-B, and is currently used successfully to achieve primary soft tissue closure in immediate implant placement cases. This method entails raising a full-thickness mucoperiosteal flap through two vertical parallel incisions that are made along both sides of the extraction socket and extended vestibularly. The flap is then reflected and extended farther vestibularly. A periosteal slitting incision is then made horizontally at the base of the flap, after which multiple incisions in the periosteum can be made to lengthen and release the flap if required. The flap is then released and extended to cover the socket and sutured to the palatal or lingual mucosa. This method provides an excellent predictable socket seal, but is not satisfactory from an esthetic point of view because the attached buccal mucosa shifts from its original position to the crest of the ridge, thus losing its continuity. Nevertheless, this mucogingival discontinuity can be corrected during second-stage surgery. This can be achieved by apically repositioning the keratinized tissues from the crest of the ridge to the labial side, thus restoring soft tissue integrity. (See Figures 6.4A-O.)

Palatal Rotated Flap

The palatal rotated flap technique was introduced by Nemkovesky and others (2000). The palatal rotated flap can be either a full-thickness or a partial-thickness flap; both originally aimed at achieving primary closure on top of an immediate implant without modifying or altering the buccal contour of keratinized mucosa, which can be vital to the final esthetic outcome of implant-supported prostheses. A palatal pedicle flap is rotated toward the buccal mucosa to cover the socket orifice. In using the partial-thickness rotated palatal flap, an intra-sulcular incision is made around the maxillary tooth to be extracted and the proximal palatal aspect. Maximum soft tissue, including interdental papillae, is preserved in the flap design.

Maxillary First Molar Implant
Figure 6.3. A. Oroantral communication in the place of a missing maxillary first molar. B. The closure of the oroantral communication using Rehermanplasty.
Raised Gum Flap
Figure 6.4. A. Socket condition post tooth extraction. B. A mucoperiosteal flap designed for immediate implant placement. C. A mucoperiosteal flap reflection. D. Implant installation with an osseous defect.
Immediate Post Extraction Implant

Figure 6.4. E. The osseous defect is being grafted. F. The bone graft is covered with a resorbable membrane (BioMend, Zimmer Dental, Carlsbad, CA, USA). Complete soft tissue closure. G. The scallop of the gingival margin is being trimmed with a scissor in order to adapt to the palatal side. H. The gingival scallop after trimming.

Epithelial Tissue Tooth Extraction

A full-thickness mucoperiosteal palatal flap is raised, extending at least one tooth mesially and distally from the tooth to be extracted. A minimal buccal flap is then reflected, including only interdental papillae and marginal gingiva, exposing the bone crest. The tooth is carefully extracted, and granulation tissue, epithelium, and bone walls are curetted. The receptor site is prepared and the implant is placed. The palatal flap is split in two. The deeper flap contains periosteum and the inner part of the subepithelial connective tissue. The superficial flap contains epithelium and the superficial part of the connective tissue. A second incision, involving only the deeper flap, further disconnects these two flaps. The deeper flap is thus transformed into a pediculated one, becoming mobile and easily rotated under the minimally reflected buccal flap, covering the augmented implant site. The superficial layer of the palatal flap is then repositioned and sutured. Consequently, complete primary soft tissue closure over the implant site is achieved.

The full-thickness palatal rotated flap requires an intrasulcular incision to be made around the maxillary tooth to be extracted and the proximal palatal aspect of the adjacent teeth. A minimal buccal flap, including only interdental papillae and marginal gingiva, exposing the bone crest, is then reflected. The socket is then curetted properly. A sharp internal beveled incision delineating a pediculated full-thickness palatal flap is then made. The extension should be sufficient to allow complete coverage of the alveolus and overlapping of the crestal buccal bone. An oblique proximal incision facilitates rotation of the pedicle, which is wider than 5 mm. Bone-grafting material is used to fill the gap between the implant and the bone wall. The palatal flap is tucked and sutured under the minimally reflected buccal flap covering the grafted implant site, achieving primary soft tissue closure, as shown in Figures 6.5A-B.

The need for coronal repositioning of the marginal gingiva is avoided in this method. The mucogingival junction remains unchanged, vestibular depth is preserved, and potential gingival recession at adjacent donor sites is avoided. When performing palatal rotated flaps to cover immediately placed implants, the palatal incision should be made distal to the midline for better blood supply, bearing in mind that the procedure might exhibit intraoperative bleeding that can be controlled. The use of the rotated palatal flap for socket closure has shown great clinical predictability for the sufficient blood supply to the flap itself, and the thickness of the palatal

Palatal Flap Blood Supply

Figure 6.6A. A palatal rotated flap is made to cover the implant and sutured to the labial mucosa.

Figure 6.5A. An illustration showing the design of the rotated palatal flap.

Figure 6.6A. A palatal rotated flap is made to cover the implant and sutured to the labial mucosa.

Gingival Rotation Flap Palatal
Figure 6.5B. Illustration showing rotation of the flap to the labial side to cover the implant site.

soft tissue offers a better mechanical barrier against wound sloughing. (See Figures 6.6A-B and 6.7A-B.)

Buccal Rotated Flap

Becker and Becker (1990) developed another clinical solution to achieve soft tissue closure on top of immediately placed implant fixtures. The buccal rotated flap technique was used to obtain a tension-free closure on top of dental implants placed in freshly extracted sockets, thus achieving soft tissue closure without creating any labial mucogingival discrepancies. However, the procedure requires advanced surgical skills in soft tissue handling. The authors recommended a split thickness flap from the tooth adjacent to the donor tooth to cover the exposed bone on the donor tooth itself (Becker et al. 1994). Novaes (1997) modified this technique by incorporating various incisions that improved the clinical outcome and reduced postoperative complications. (See Figures 6.8A-B.)

Figure 6.6B. Six weeks after healing.

Figure 6.7A.

rotated flap.

Soft tissue defect corrected using a double palatal tissue

Figure 6.7A.

rotated flap.

Soft tissue defect corrected using a double palatal tissue

Vestibular Flap Rotation
Figure 6.7B. The flap is sutured.
Figure 6.8A. Sever soft tissue defect due to several bone graft procedure failures.
Becker Implant Failure

Figure 6.8B. The use of a rotated palatal flap to overcome the situation and to bulk up the palatal tissues labially and on top of the ridge area.

Novaes's technique (Novaes and Novaes 1997) starts by placing a releasing incision on the mesial line angle of the tooth to be extracted followed by a second releasing incision placed on the line angle of the tooth adjacent to the tooth to be extracted. A split-thickness flap is made over the tooth to be extracted, starting at the releasing incision and continuing distally until reaching the distal line angle of the same tooth. At this point, a vertical incision is made in the periosteum down to the bone surface and a combination full-thickness (more coronal portion) and split-thickness (more apical portion) flap is made. The tooth is gently extracted, all granulation tissue curetted, and the alveolus rinsed with sterile saline.

Next, a grafting material is used or a blood clot is allowed to form. The author used a resorbable hydrox-yapatite (Bon-Apatite, Bio-Interfaces, San Diego, USA) and covered it using a nonresorbable cellulose membrane (Gengiflex, Bio Fill, Produtos Biotecnologicos, Curitiba, Brazil). The membrane is recommended to impede connective tissue of the inner surface of the flap from invading the socket, which could hamper complete bone formation. Grafting material is used to avoid collapse of the membrane into the socket when bone resorption of one or more walls of the socket has occurred. The flap is then moved distally and coronally and sutured over the membrane to the palatal or lingual tissue. Just prior to suturing, tension on the flap must be tested, and a small horizontal incision may be placed on the mesial and most apical portion of the flap to relieve any tension on the flap. A gingivectomy-type incision is made on the most coronal portion of the palatal or lingual flap to create a beveled surface of exposed connective tissue on which to lay the border of the buccal flap. This connective tissue-to-connective tissue contact is important in the maintenance of the primary soft tissue closure. When the flap is displaced distally from the adjacent tooth, as in this situation, some excessive soft tissue will need to be trimmed on its distal portion to facilitate closure of the distal vertical incision. The excessive tissue is carefully removed to preserve all of the keratinized tissue that was used as a free gingival graft to cover the exposed periosteum on the buccal surface of the donor tooth.

The free gingival graft might lead to the creation of an adequate zone of keratinized tissues on the donor tooth, avoiding the creation of mucogingival problems; however, scar tissue can be noticeable a few months' posthealing. Becker and Becker (1990) have recommended using a split-thickness flap from the tooth adjacent to the donor tooth to cover the exposed bone on the donor tooth, or closing the mesial and the vertical incision the best way possible, and to correct any mucogin-gival problems at a later date, if they arise. The patient is placed on 500 mg of amoxicillin every 8 hours for 10 days, starting 24 hours before the procedure, and is instructed to rinse twice daily with a solution of 0.12% chlorhexidine for 10 days. (See Figures 6.9A-D.)

Pedicle Island Flap

The pedicle island flap (Rosenquist 1997) is yet another method of achieving a soft tissue seal on top of immediate implant fixtures. It offers a predictable socket closure and achieves an excellent esthetic post-operative result. In this technique, the attached buccal mucosa is not altered or repositioned, and therefore the mucogin-gival integrity is kept intact. After the implant is placed in the fresh extraction socket, two parallel horizontal incisions are made in the vestibular mucosa, creating a tongue-like extension. The base of the mucosal extension is placed posterior or distal to the socket opening. The flap is made approximately 20 mm long and as wide as the socket width. The surface of the mucosal extension is thereafter de-epithelialized, except for the apical portion that corresponds to the surface of the extraction socket. A subperiosteal tunnel connecting the marginal keratinized mucosa is then made, buccal to the extraction socket and the corresponding site in the vestibule.

Figure 6.10A. A patient with an unsalvageable remaining root of the maxillary second premolar, with the outlines of the flap marked using a blue marker.

The flap extension is subsequently pulled through the tunnel until the epithelialized apex of the flap covers the socket and then is sutured to the attached free gingival from the palatal side of the socket. Finally, the vestibular wound is approximated and sutured.

The base of the mucosal extension exhibits a rich blood supply, which enhances the predictability of the technique (Rosenquist 1997). (See Figures 6.10A-F.) It also provides a proper tissue seal on top of the socket. However, the delicate nature of the mobile soft tissue making up the mucosal extension may create difficulty in clinical handling. The mucosa can easily be torn or lacerated, especially during the dissection or de-epithelialization of the tongue-like mucosal extension. The color difference between the extension and the surrounding attached mucosa makes it a distinct island of vestibular tissues to be identified and excised at the second-stage surgery. (See Figures 6.11A-E.) The pedicle island flap technique might provide great assistance in soft tissue closure in critical conditions such as exposed bone grafts or in cases of jeopardized loss of keratinized tissue band. The method offers greater predictability in such conditions because it offers a predictable blood supply to the flap.

Rotated Split Thickness Flap

Figure 6.10B. Illustration showing the split thickness flap being dissected.

Figure 6.10A. A patient with an unsalvageable remaining root of the maxillary second premolar, with the outlines of the flap marked using a blue marker.

Rotated Split Thickness FlapFree Flap Soft Tissue Graft

Figure 6.10C. The reflected split thickness flap completed. Figure 6.10E. The rotated buccal flap is sutured. A free gingival graft excised from the excessive soft tissue distally covers the exposed periosteum.

Rotated Split Thickness FlapGbr Oral Scar

Figure 6.10a View of the rotation of the buccal flap to cover the implant Figure 6.10F. The final healing leaving scar tissue formation and the final site.

restoration in place.

Figure 6.11. A. Illustration showing the tongue-like extension dissected from the vestibular mucosa. B. Illustration showing the tongue-like extension with its epithelium stripped. C. An illustration showing the subperiosteal tunnel created. D. An illustration showing the mucosal extension being tucked underneath the tunnel to cover the implant site. E. Illustration showing the mucosal extension sutured to the palatal free gingival margins of the socket.

Figure 6.11. A. Illustration showing the tongue-like extension dissected from the vestibular mucosa. B. Illustration showing the tongue-like extension with its epithelium stripped. C. An illustration showing the subperiosteal tunnel created. D. An illustration showing the mucosal extension being tucked underneath the tunnel to cover the implant site. E. Illustration showing the mucosal extension sutured to the palatal free gingival margins of the socket.

How To Reduce Acne Scarring

How To Reduce Acne Scarring

Acne is a name that is famous in its own right, but for all of the wrong reasons. Most teenagers know, and dread, the very word, as it so prevalently wrecks havoc on their faces throughout their adolescent years.

Get My Free Ebook


Responses

  • briffo
    How to get primary closure on immediate implant flaps?
    1 year ago

Post a comment