Problems With Physical Fitness Tests

Dorn Spinal Therapy

Spine Healing Therapy

Get Instant Access


When a push-up is performed properly, the scapulae abduct as the trunk is pushed upward. The scapulae move forward to a position that is comparable to that of reaching the arms directly forward. When the serratus anterior muscle is weak, the push-up movement still can be performed, but the scapulae do not move into the abducted position as in a properly performed push-up.

If the primary purpose of the push-ups is to test strength and endurance of the arm muscles, it accomplishes that purpose, but in the presence of serratus weakness, it does so at the expense of the serratus muscle. Evidence for this is seen in the winging of the scapulae and in the inability to complete the range of scapular motion in the direction of abduction. (See below.)

When push-ups are done at the expense of the ser-ratus muscle, the activity can no longer be considered an index for the physical fitness of the person being tested.


Sitting with knees extended, this test is done by reaching forward to touch fingertips to toes. For young children and most adults, touching the toes in this position may be considered a normal accomplishment. Reaching beyond the toes usually denotes excessive flexibility of the back, excessive length of the hamstrings, or both. The stated purpose of the sit-and-reach test is to evaluate the flexibility of the low back and hamstrings. Scoring is based on how many inches beyond the toes the individual can reach. Ostensibly, the distance beyond equates with good, better, or best flexibility of the back and hamstrings, with emphasis on "the more, the better."

This test fails to address important variables that affect test results. Variations in "normal" occur according to age group, and limitations result from imbalances between the length of back and hamstring muscles.

This inability to touch toes—much less to reach beyond them—is normal for many youths between the ages of 10 and 14 years. These children are at a stage of growth when the legs are long in relation to the trunk, and they should not be forced to touch their toes (27). (See p. 101.)

Limited back flexibility can go undetected if the hamstrings are stretched. Individuals with this imbalance may "pass" the test, whereas many children with normal flexibility for their age will "fail." It would be more accurate to say that the test has failed these children than to say that these children have failed the test.

In addition to being told that they have "failed," many young people are then given exercises to increase flexibility of the spine and/or stretch the hamstrings when such exercises are unnecessary or even con-traindicated.

Adults will demonstrate numerous variations in length of the hamstrings and back muscles (see pp. 174, 175). Like adolescents, those adults whose legs are long in relation to the trunk may have normal flexibility of the back and hamstrings yet be unable to touch their toes.

The extensive use of physical fitness tests and the importance placed on their results make it imperative that these tests be carefully scrutinized.


The normal spine has curves in both anterior and posterior directions, but a curve in a lateral direction is considered to be abnormal. Scoliosis is a lateral curvature of the spine. Because the vertebral column cannot bend laterally without also rotating, scoliosis involves both lateral flexion and rotation.

There are many known causes of scoliosis. It may be congenital or acquired; it may result from disease or injury. Some of the causes involve changes in bony structure, such as wedging of a vertebral body, and some relate to neuromuscular problems directly affecting the musculature of the trunk. Still others relate to impairment of an extremity, such as shortness of one leg, or impairment of vision or hearing (29).

Many cases of scoliosis, however, have no known cause. These cases are referred to as idiopathic. In spite of the battery of tests that are available to help establish a cause, a high percentage of cases fall into this category.

This section on scoliosis deals chiefly with idio-pathic scoliosis. Muscle imbalance that exists as a result of disease, such as poliomyelitis, is readily recognized as a cause of scoliosis when it affects the musculature of the trunk. However, muscle imbalance also is present in so-called "normal" individuals but often goes unrecognized except by those who employ muscle testing when examining cases of faulty posture. A basic problem in the management of idiopathic scoliosis is failure to accept the fact that muscle imbalance, which can exist without a known cause, plays an important role in the etiology.

The following discussion focuses on one segment of this subject that deserves more attention than it has re-ceived—i.e., the care of patients with early scoliosis for whom proper exercises and supports can make a difference in outcome. The literature regarding scoliosis is devoid of specific procedures for testing overall postural alignment and muscle imbalance.

In examining patients with scoliosis, it is especially important to observe the relationship of the overall posture to the plumb line. Suspending a plumb line in line with the seventh cervical vertebra or the buttocks crease (as is frequently done) may be useful in ascertaining the curvature of the spine itself. It does not, however, reveal the extent to which the spine may be compensating for a lateral shift of the pelvis or other postural faults that contribute to the lateral pelvic tilt and associated spinal deviations. Analysis of postural alignment appears in Section II of this chapter.


Throughout the years, elaborate exercise programs have been instituted in response to the treatment needs of patients with scoliosis. The creeping exercises advocated by Klapp were discarded when problems with children's knees forced the discontinuance of such a program (30). Exercises that overemphasized flexibility created problems by making the spine more vulnerable to collapse. When treating patients with S-curves. one must avoid exercises that adversely affect one of the curves while attempting to correct the other.

It is not surprising, therefore, that the usefulness of exercises in cases of scoliosis has been questioned. For many years, the attitude has been that exercises have little or no value. This idea is not new. The following statement was made years ago by Risser:

It was customary at the scoliosis clinic at New York Orthopedic Hospital, as late as 1920-1930, to send new patients with scoliosis to the gymnasium for exercises. Invariably the patients who were 12 to 13 years of age showed an increase of the scoliosis ... it was therefore assumed that exercises and spinal motion made the curve increase (31 ).

Except in some isolated instances, exercise programs for patients with scoliosis continued to be looked on with skepticism. The American Academy of Orthopedic Surgeons 1985 lecture series included this statement:

Physical therapy cannot prevent a progressive deformity, and there are those who believe specific spinal exercise programs work in a counterproductive fashion by making the spine more flexible than it ordinarily would be and by so doing making it more susceptible to progression (32).

The overemphasis on flexibility was wrong. Adequate musculoskeletal evaluation has been lacking. As a result, there has been little scientific basis on which to justify the selection of therapeutic exercises. Scoliosis is a problem of asymmetry, and to restore I symmetry requires the use of asymmetrical exercises I along with appropriate support. Stretching of tight muscles is desirable, but overall flexibility of the spine is not. It is better to have stiffness in the best attainable position than to have too much flexibility of the back.

Was this article helpful?

0 0
101 Fitness Tips

101 Fitness Tips

100 Fitness Tips EVERY Fitness Buff Should Know. This Report 100 Fitness Tips will help you Utilize These Tips to Get Fit amp Healthy Starting Today.

Get My Free Ebook

Post a comment