Biotechnology

Animals have their own effective way of protecting themselves from predators and abnormal climatic conditions. An intriguing example of protection adopted by animals is the changing of color by chameleons to match the color of their surrounding environment. A chameleon has several layers of cells beneath its transparent skin, of which some layers contain pigments while others just reflect light to create new colors (Rohrlich and Rubin, 1975). The most often changed colors of chameleons are between green, brown and gray, which coincidently, often match the background colors of their habitat. Although we are yet to produce a fabric that can change its color with the changing background, camouflage-patterned clothing is an effective way to conceal soldiers in their surrounding environments (Scott, 2000).

Another interesting aspect of color in nature is the vivid and extraordinary fastness of color in the feathers of peacocks. Color production in nature is either due to structural coloration or pigmentation (Zi et al., 2003). The color of peacock feathers is due to the 2D photonic-crystal structure that has the same size as the wavelength of light. This crystal is arranged in lattices in a number of layers called periods that can reflect light to produce colors. The variations in the lattice constants or the number of periods produce the diversified colors (Zi et al., 2003). We are still unable to simulate either the chameleon or peacock color to perfection. Studies on dyes that can change color with changing conditions such as temperature and light have partially succeeded, but the change in the magnitude of color is very narrow.

Natural materials are renowned for their relatively higher strength and toughness. Spider dragline silk has a breaking energy per unit weight two orders of magnitude greater than that of high-tensile steel (Dalton et al., 2003; Smith et al., 1997). Spider silk is stronger than Kevlar and stretches better than nylon, a combination of properties seen in no other fiber (Service, 2002). Spider silk is considered an ideal material for protective ballistic materials (Dalton et al., 2003, Osaki, 1996). Spider silk has been artificially produced by using liquid crystalline spinning (Vollrath and Knight, 2001). By successfully copying the spider's internal processing mechanisms and with precise control over protein folding combined with knowledge of the gene sequences of its spinning dopes, industrial production of silk-based fibers with unique properties can be commercialized (Vollrath and Knight, 2001).

End of Days Apocalypse

End of Days Apocalypse

This work on 2012 will attempt to note them allfrom the concepts andinvolvement by the authors of the Bible and its interpreters and theprophecies depicted in both the Hopi petroglyphs and the Mayan calendarto the prophetic uttering of such psychics, mediums, and prophets asNostradamus, Madame Blavatsky, Edgar Cayce, and Jean Dixon.

Get My Free Ebook


Post a comment