The production of nano-fibres has been revolutionised by the development of electro-spinning. If a liquid is extruded through a nozzle with a high potential between the tube and the collector plate, a matt of extremely fine fibres is laid down. It was thought that the fineness was due to splitting of the extruded filament, but it is now known that it is due to an intense whirling action, which results in an extremely high stretching and attenuation of the single filament.

Electro-spinning has two great advantages. It is versatile, since any solution or melt can be electro-spun, and the equipment needed is of a small scale. The process is an old one, which was neglected until the work of Reneker in the 1990s (Fong and Reneker, 2000). Now many laboratories have bench-size equipment. This makes it easy to explore new fibre types and economic to make small quantities, which would be sufficient for specialised protective purposes. If the demand becomes greater, more productive multi-head machinery will be developed. Fibre diameters are typically in the range of 10 to 100 nm. With current procedures a matt of fibres is laid down on a moving belt. This non-woven fabric would be suitable for many protective applications. If woven or knitted fabrics were needed, it can be expected that ways will be found to collect the random fibre assembly and orient the fibres into a yarn.

10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook

Post a comment